Separable identification of continuous-time systems having multiple unknown time delays from sampled data

Y. Ghoul, K. Ibn Taarit, M. Ksouri
{"title":"Separable identification of continuous-time systems having multiple unknown time delays from sampled data","authors":"Y. Ghoul, K. Ibn Taarit, M. Ksouri","doi":"10.1109/CEIT.2016.7929051","DOIUrl":null,"url":null,"abstract":"This paper treats the problem of continuous-time model identification with unknown time delays from sampled data. The proposed method estimates the plant and the time delays in a separable way. More precisely, the plant is estimated by the standard recursive Least Square algorithm while the time delays are explicitly estimated by the Gauss-Newton algorithm. This means clear separation between the system dynamics and time delays. Numerical simulations are given at last to illustrate the validity of the proposed scheme.","PeriodicalId":355001,"journal":{"name":"2016 4th International Conference on Control Engineering & Information Technology (CEIT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Conference on Control Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2016.7929051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper treats the problem of continuous-time model identification with unknown time delays from sampled data. The proposed method estimates the plant and the time delays in a separable way. More precisely, the plant is estimated by the standard recursive Least Square algorithm while the time delays are explicitly estimated by the Gauss-Newton algorithm. This means clear separation between the system dynamics and time delays. Numerical simulations are given at last to illustrate the validity of the proposed scheme.
采样数据中具有多个未知时滞的连续系统的可分离辨识
本文研究了采样数据中未知时滞的连续时间模型辨识问题。该方法以可分离的方式估计对象和时间延迟。更精确地说,用标准递归最小二乘算法估计对象,而用高斯-牛顿算法显式估计时间延迟。这意味着系统动力学和时间延迟之间的明确分离。最后通过数值仿真验证了所提方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信