Subsea Intervention System Connector Capacities per the Elastic-Plastic Analysis Methodology

A. Sepehri, G. Bansal, Mangesh Edke
{"title":"Subsea Intervention System Connector Capacities per the Elastic-Plastic Analysis Methodology","authors":"A. Sepehri, G. Bansal, Mangesh Edke","doi":"10.1115/pvp2019-93798","DOIUrl":null,"url":null,"abstract":"\n The offshore oil and gas industry is drilling into and producing from wells in high-pressure, high-temperature (HPHT) environments. This has created a greater demand to develop more advanced tools and new technology to safely overcome the challenges in these operations. Due to the sensitivity and potential impact on the environment, the industry is striving to homogenize the design and acceptance criteria. The API 17G is the industry standard for offshore intervention operations. According to the standard, design verification is performed using finite element analysis (FEA). The standard provides three sets of criteria for determining capacities that adopt the methodologies from ASME Boiler Pressure Vessel Code (BPVC) Section VIII, Div. 3.\n The objective of this study is to evaluate tension, pressure, and bending moment capacities per the elastic-plastic analysis methodologies outlined in API 17G for a subsea intervention system connector. The global and local failure capacities are presented for yielding load, plastic collapse, and 2% strain methods. Results indicate that the plastic collapse method is the most conservative approach for evaluating the global capacity of the connector.","PeriodicalId":174920,"journal":{"name":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The offshore oil and gas industry is drilling into and producing from wells in high-pressure, high-temperature (HPHT) environments. This has created a greater demand to develop more advanced tools and new technology to safely overcome the challenges in these operations. Due to the sensitivity and potential impact on the environment, the industry is striving to homogenize the design and acceptance criteria. The API 17G is the industry standard for offshore intervention operations. According to the standard, design verification is performed using finite element analysis (FEA). The standard provides three sets of criteria for determining capacities that adopt the methodologies from ASME Boiler Pressure Vessel Code (BPVC) Section VIII, Div. 3. The objective of this study is to evaluate tension, pressure, and bending moment capacities per the elastic-plastic analysis methodologies outlined in API 17G for a subsea intervention system connector. The global and local failure capacities are presented for yielding load, plastic collapse, and 2% strain methods. Results indicate that the plastic collapse method is the most conservative approach for evaluating the global capacity of the connector.
根据弹塑性分析方法计算海底修井系统连接器的容量
海上油气行业正在高压、高温(HPHT)环境下钻井和生产。这就对开发更先进的工具和新技术产生了更大的需求,以安全地克服这些作业中的挑战。由于对环境的敏感性和潜在影响,业界正在努力使设计和验收标准同质化。API 17G是海上修井作业的行业标准。根据标准,采用有限元分析(FEA)进行设计验证。该标准提供了三套标准,用于采用ASME锅炉压力容器规范(BPVC)第VIII节第3部分的方法来确定容量。本研究的目的是根据API 17G中概述的海底修井系统连接器的弹塑性分析方法,评估其张力、压力和弯矩能力。给出了屈服荷载、塑性破坏和2%应变方法的整体和局部破坏能力。结果表明,塑性破坏法是评价连接器整体承载力最保守的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信