{"title":"Conductive Effect of Increased Crystallinity of Single-Walled Carbon Nanotubes as Field Emitter","authors":"N. Shimoi","doi":"10.5772/INTECHOPEN.84854","DOIUrl":null,"url":null,"abstract":"Carbon nanotubes (CNTs) exhibit chemical stability, thermal conductivity, mechanical strength, and unique properties as a quasi-one-dimensional material with nanoscale needle shape. Field-emission (FE) electron sources appear to be the most promising industrial application for CNTs, and their deployment is approaching practical utilization. So far, efforts to construct an FE cathode with single-walled carbon nanotubes (SWCNTs) have only managed to average out the large FE current fluctuations in a nonhomogeneous electron emitter plane and the short emission lifetime because the crystal defects in the carbon network in CNTs prevent the realization of a stable emission current. The utilization of CNTs to obtain an effective electronic device, one with stable emission and low FE current fluctuations, relies on the high crystallization of CNTs, a task that can be fulfilled by using highly crystalline SWCNTs (hc-SWCNTs). The author could succeed in developing a model of the flow of electrons through the inside of the hc-SWCNTs and SWCNTs with crystal defects to the outside using the fluctuations of the tunneling current. Therefore, we expect that the hc-SWCNTs are used as field emitters with stable emission and low power consumption for saving energy.","PeriodicalId":150202,"journal":{"name":"Perspective of Carbon Nanotubes","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspective of Carbon Nanotubes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.84854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon nanotubes (CNTs) exhibit chemical stability, thermal conductivity, mechanical strength, and unique properties as a quasi-one-dimensional material with nanoscale needle shape. Field-emission (FE) electron sources appear to be the most promising industrial application for CNTs, and their deployment is approaching practical utilization. So far, efforts to construct an FE cathode with single-walled carbon nanotubes (SWCNTs) have only managed to average out the large FE current fluctuations in a nonhomogeneous electron emitter plane and the short emission lifetime because the crystal defects in the carbon network in CNTs prevent the realization of a stable emission current. The utilization of CNTs to obtain an effective electronic device, one with stable emission and low FE current fluctuations, relies on the high crystallization of CNTs, a task that can be fulfilled by using highly crystalline SWCNTs (hc-SWCNTs). The author could succeed in developing a model of the flow of electrons through the inside of the hc-SWCNTs and SWCNTs with crystal defects to the outside using the fluctuations of the tunneling current. Therefore, we expect that the hc-SWCNTs are used as field emitters with stable emission and low power consumption for saving energy.