A new stability condition for discrete time linear threshold recurrent neural networks

Wei Zhou, J. Zurada
{"title":"A new stability condition for discrete time linear threshold recurrent neural networks","authors":"Wei Zhou, J. Zurada","doi":"10.1109/ICICIP.2014.7010321","DOIUrl":null,"url":null,"abstract":"This paper discusses the stability condition for discrete time recurrent neural networks (RNNs) with linear threshold (LT) neurons. In the existing research literature [1], the LT RNN in synchronous update mode is completely convergent if I-W is a copositive matrix. However, this condition also requires that W should be symmetrical. Here, a new stability condition is presented, which extends previous theoretical result first published in [1], and allows LT RNN to be stable when W is unsymmetrical in some cases. Simulation results are used to illustrate the theory.","PeriodicalId":408041,"journal":{"name":"Fifth International Conference on Intelligent Control and Information Processing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2014.7010321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper discusses the stability condition for discrete time recurrent neural networks (RNNs) with linear threshold (LT) neurons. In the existing research literature [1], the LT RNN in synchronous update mode is completely convergent if I-W is a copositive matrix. However, this condition also requires that W should be symmetrical. Here, a new stability condition is presented, which extends previous theoretical result first published in [1], and allows LT RNN to be stable when W is unsymmetrical in some cases. Simulation results are used to illustrate the theory.
离散时间线性阈值递归神经网络的一个新的稳定性条件
讨论了具有线性阈值(LT)神经元的离散时间递归神经网络(rnn)的稳定性条件。在已有的研究文献[1]中,同步更新模式下的LT RNN在I-W为合成矩阵时是完全收敛的。然而,这个条件也要求W应该是对称的。这里提出了一个新的稳定性条件,它扩展了先前在[1]中首次发表的理论结果,并允许LT RNN在W不对称的某些情况下是稳定的。仿真结果验证了该理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信