{"title":"Grid Impedance Impact on the Maximum Power Transfer Capability of Grid-Connected Inverter","authors":"Liangwei Huang, Chao Wu, Dao Zhou, F. Blaabjerg","doi":"10.1109/ECCE-Asia49820.2021.9479080","DOIUrl":null,"url":null,"abstract":"This paper analyzes the maximum power transfer capability of the grid-connected renewable energy generation system, which is mainly influenced by the short circuit ratio (SCR) and the resistance-inductance ratio (R/X) of grid impedance. It is revealed that an inverter connected to the AC grid with a larger SCR or a smaller R/X ratio has more power transfer capability. Besides, it is found that the critical conditions for the inductive grid and the resistive grid are different. Under an inductive grid, SCR = 1 is a critical point for effective power transmission. However, under a resistive grid, the SCR needs to be at least higher than 5 for effective power transmission. Finally, simulation results verify the effectiveness of the analysis.","PeriodicalId":145366,"journal":{"name":"2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE-Asia49820.2021.9479080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper analyzes the maximum power transfer capability of the grid-connected renewable energy generation system, which is mainly influenced by the short circuit ratio (SCR) and the resistance-inductance ratio (R/X) of grid impedance. It is revealed that an inverter connected to the AC grid with a larger SCR or a smaller R/X ratio has more power transfer capability. Besides, it is found that the critical conditions for the inductive grid and the resistive grid are different. Under an inductive grid, SCR = 1 is a critical point for effective power transmission. However, under a resistive grid, the SCR needs to be at least higher than 5 for effective power transmission. Finally, simulation results verify the effectiveness of the analysis.