An optimal algorithm for area minimization of slicing floorplans

W. Shi
{"title":"An optimal algorithm for area minimization of slicing floorplans","authors":"W. Shi","doi":"10.1109/ICCAD.1995.480160","DOIUrl":null,"url":null,"abstract":"The traditional algorithm of L. Stockmeyer (1983) for area minimization of slicing floorplans has time (and space) complexity O(n/sup 2/) in the worst case, or O(n log n) for balanced slicing. For more than a decade, it is considered the best possible. In this paper, we present a new algorithm of worst-case time (and space) complexity O(n log n), where n is the total number of realizations for the basic blocks, regardless whether the slicing is balanced or not. We also prove /spl Omega/(n log n) is the lower bound and the time complexity of any area minimization algorithm. Therefore, the new algorithm not only finds the optimal realization, but also has an optimal running time.","PeriodicalId":367501,"journal":{"name":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1995.480160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The traditional algorithm of L. Stockmeyer (1983) for area minimization of slicing floorplans has time (and space) complexity O(n/sup 2/) in the worst case, or O(n log n) for balanced slicing. For more than a decade, it is considered the best possible. In this paper, we present a new algorithm of worst-case time (and space) complexity O(n log n), where n is the total number of realizations for the basic blocks, regardless whether the slicing is balanced or not. We also prove /spl Omega/(n log n) is the lower bound and the time complexity of any area minimization algorithm. Therefore, the new algorithm not only finds the optimal realization, but also has an optimal running time.
切片平面图面积最小化的最优算法
传统的L. Stockmeyer(1983)切片平面图面积最小化算法在最坏情况下的时间(和空间)复杂度为O(n/sup 2/),平衡切片的时间(和空间)复杂度为O(n log n)。十多年来,它被认为是最好的。在本文中,我们提出了一种新的最坏情况时间(和空间)复杂度为O(n log n)的算法,其中n为基本块的实现总数,而不管切片是否平衡。我们还证明了/spl /(n log n)是任何面积最小化算法的下界和时间复杂度。因此,新算法不仅找到了最优实现,而且具有最优运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信