Learning high-dimensional Mixture Models for fast collision detection in Rapidly-Exploring Random Trees

Jinwook Huh, Daniel D. Lee
{"title":"Learning high-dimensional Mixture Models for fast collision detection in Rapidly-Exploring Random Trees","authors":"Jinwook Huh, Daniel D. Lee","doi":"10.1109/ICRA.2016.7487116","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for fast collision detection in high dimensional configuration spaces for Rapidly-exploring Random Trees (RRT) motion planning. The proposed method is based upon Gaussian Mixture Models (GMM) that are learned using an incremental Expectation Maximization clustering algorithm trained online using exemplars provided by a slow, conventional kinematic-based collision detection routine. The number of collision checks needed can be drastically reduced using a biased random sampling from the learned GMM distribution, and the learned models are continually refined and improved as the RRT planning algorithm proceeds. Our proposed method is demonstrated on several example applications and experimental results show marked improvement in computational efficiency over previous approaches.","PeriodicalId":200117,"journal":{"name":"2016 IEEE International Conference on Robotics and Automation (ICRA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2016.7487116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

This paper presents a new approach for fast collision detection in high dimensional configuration spaces for Rapidly-exploring Random Trees (RRT) motion planning. The proposed method is based upon Gaussian Mixture Models (GMM) that are learned using an incremental Expectation Maximization clustering algorithm trained online using exemplars provided by a slow, conventional kinematic-based collision detection routine. The number of collision checks needed can be drastically reduced using a biased random sampling from the learned GMM distribution, and the learned models are continually refined and improved as the RRT planning algorithm proceeds. Our proposed method is demonstrated on several example applications and experimental results show marked improvement in computational efficiency over previous approaches.
在快速探索随机树中学习用于快速碰撞检测的高维混合模型
本文提出了一种用于快速探索随机树(RRT)运动规划的高维构型空间快速碰撞检测的新方法。所提出的方法基于高斯混合模型(GMM),该模型是使用增量期望最大化聚类算法学习的,该算法使用缓慢的、传统的基于运动的碰撞检测例程提供的示例在线训练。从学习到的GMM分布中使用有偏随机抽样可以大大减少所需的碰撞检查次数,并且随着RRT规划算法的进行,学习到的模型不断得到改进和改进。我们提出的方法在几个实例应用中得到了验证,实验结果表明,与以前的方法相比,计算效率有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信