{"title":"Dynamic analysis of parallel-module converter system with current balance controllers","authors":"T. Kohama, T. Ninomiya, M. Shoyama, F. Ihara","doi":"10.1109/INTLEC.1994.396656","DOIUrl":null,"url":null,"abstract":"Dynamic response and stability analyses of a parallel-module power converter system with current balance controllers are described. The state-space averaging method is used to obtain a small-signal model for the dynamic analysis. The root locus method is used to discuss the stability of the parallel system. As a result, instability of the parallel system is observed in the system composed of modules with different circuit parameters. Influence of module parameters on the stability of the parallel system is discussed. Analytical results are confirmed experimentally for a two-paralleled forward power converter system.<<ETX>>","PeriodicalId":123164,"journal":{"name":"Proceedings of Intelec 94","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Intelec 94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.1994.396656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
Dynamic response and stability analyses of a parallel-module power converter system with current balance controllers are described. The state-space averaging method is used to obtain a small-signal model for the dynamic analysis. The root locus method is used to discuss the stability of the parallel system. As a result, instability of the parallel system is observed in the system composed of modules with different circuit parameters. Influence of module parameters on the stability of the parallel system is discussed. Analytical results are confirmed experimentally for a two-paralleled forward power converter system.<>