Global Localization on OpenStreetMap Using 4-bit Semantic Descriptors

Fan Yan, O. Vysotska, C. Stachniss
{"title":"Global Localization on OpenStreetMap Using 4-bit Semantic Descriptors","authors":"Fan Yan, O. Vysotska, C. Stachniss","doi":"10.1109/ECMR.2019.8870918","DOIUrl":null,"url":null,"abstract":"Localization is an essential capability of mobile vehicles such as robots or autonomous cars. Localization systems that do not rely on GNSS typically require a map of the environment to compare the local sensor readings to the map. In most cases, building such a model requires an explicit mapping phase for recording sensor data in the environment. In this paper, we investigate the problem of localizing a mobile vehicle equipped with a 3D LiDAR scanner, driving on urban roads without mapping the environment beforehand. We propose an approach that builds upon publicly available map information from OpenStreetMap and turns them into a compact map representation that can be used for Monte Carlo localization. This map requires to store only a tiny 4-bit descriptor per location and is still able to globally localize and track a vehicle. We implemented our approach and thoroughly tested it on real-world data using the KITTI datasets. The experiments presented in this paper suggest that we can estimate the vehicle pose effectively only using OpenStreetMap data.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Localization is an essential capability of mobile vehicles such as robots or autonomous cars. Localization systems that do not rely on GNSS typically require a map of the environment to compare the local sensor readings to the map. In most cases, building such a model requires an explicit mapping phase for recording sensor data in the environment. In this paper, we investigate the problem of localizing a mobile vehicle equipped with a 3D LiDAR scanner, driving on urban roads without mapping the environment beforehand. We propose an approach that builds upon publicly available map information from OpenStreetMap and turns them into a compact map representation that can be used for Monte Carlo localization. This map requires to store only a tiny 4-bit descriptor per location and is still able to globally localize and track a vehicle. We implemented our approach and thoroughly tested it on real-world data using the KITTI datasets. The experiments presented in this paper suggest that we can estimate the vehicle pose effectively only using OpenStreetMap data.
使用4位语义描述符的OpenStreetMap全局定位
定位是机器人或自动驾驶汽车等移动车辆的基本功能。不依赖GNSS的定位系统通常需要一份环境地图,以便将本地传感器的读数与地图进行比较。在大多数情况下,构建这样的模型需要一个明确的映射阶段来记录环境中的传感器数据。在本文中,我们研究了在没有事先绘制环境地图的情况下,在城市道路上行驶的配备3D激光雷达扫描仪的移动车辆的定位问题。我们提出了一种基于OpenStreetMap公开可用地图信息的方法,并将它们转换为可用于蒙特卡洛定位的紧凑地图表示形式。这个地图只需要在每个位置存储一个很小的4位描述符,并且仍然能够对车辆进行全局定位和跟踪。我们实现了我们的方法,并使用KITTI数据集在真实世界的数据上进行了彻底的测试。本文的实验表明,仅使用OpenStreetMap数据就可以有效地估计车辆姿态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信