Room-temperature two-terminal characteristics in silicon nano wires

S.F. Hu, W. Wong, S.S. Liu, Y.G. Wu, C. Sung, T.Y. Huang, S. M. Sze
{"title":"Room-temperature two-terminal characteristics in silicon nano wires","authors":"S.F. Hu, W. Wong, S.S. Liu, Y.G. Wu, C. Sung, T.Y. Huang, S. M. Sze","doi":"10.1109/NANO.2002.1032123","DOIUrl":null,"url":null,"abstract":"Quantum effects in silicon nano wires due to 1-dimensional carrier confinement were observed at room temperature. Electrical transport properties were measured on narrow thin-silicon-on-insulator wires that were defined by e-beam lithography and further narrowed and thinned down by oxidation to a final thickness of around 3 nm, and a width of 29 nm. The room-temperature current-voltage characteristics of the resulting silicon nano wires were shown to exhibit a zero current state may be due to the occurrence of Coulomb blockade.","PeriodicalId":408575,"journal":{"name":"Proceedings of the 2nd IEEE Conference on Nanotechnology","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd IEEE Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2002.1032123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum effects in silicon nano wires due to 1-dimensional carrier confinement were observed at room temperature. Electrical transport properties were measured on narrow thin-silicon-on-insulator wires that were defined by e-beam lithography and further narrowed and thinned down by oxidation to a final thickness of around 3 nm, and a width of 29 nm. The room-temperature current-voltage characteristics of the resulting silicon nano wires were shown to exhibit a zero current state may be due to the occurrence of Coulomb blockade.
硅纳米线的室温双端特性
在室温下观察了一维载流子约束下硅纳米线中的量子效应。通过电子束光刻技术测量了绝缘体上的硅线的电输运特性,并通过氧化进一步缩小和变薄,最终厚度约为3纳米,宽度为29纳米。所得到的硅纳米线的室温电流-电压特性显示出零电流状态,这可能是由于库仑阻塞的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信