{"title":"A Novel Design of Secure and Private Circuits","authors":"M. Gomathisankaran, A. Tyagi","doi":"10.1109/ISVLSI.2012.55","DOIUrl":null,"url":null,"abstract":"Secure and tamper evident computing systems can be built by encrypting both code and data. Even such secure execution environments assume the existence of a trusted processor boundary inside which the data and code are decrypted before actually using them for computation. This leaves such secure systems vulnerable against side-channel attacks. In general there are two approaches to solve this problem. First approach is to design cryptographic algorithms which can tolerate some information leakage. Second approach is to remove the correlation between the leaked information and the secret. We propose a novel circuit design technique which uses the second approach.","PeriodicalId":398850,"journal":{"name":"2012 IEEE Computer Society Annual Symposium on VLSI","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2012.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Secure and tamper evident computing systems can be built by encrypting both code and data. Even such secure execution environments assume the existence of a trusted processor boundary inside which the data and code are decrypted before actually using them for computation. This leaves such secure systems vulnerable against side-channel attacks. In general there are two approaches to solve this problem. First approach is to design cryptographic algorithms which can tolerate some information leakage. Second approach is to remove the correlation between the leaked information and the secret. We propose a novel circuit design technique which uses the second approach.