Software development framework for a distributed storage and GPGPU data processing infrastructure

I. S. Kamenskikh, D. M. Sinelnikov, D. S. Kalintsev, A. Kozlov, M. M. Rovnyagin, D. Shulga
{"title":"Software development framework for a distributed storage and GPGPU data processing infrastructure","authors":"I. S. Kamenskikh, D. M. Sinelnikov, D. S. Kalintsev, A. Kozlov, M. M. Rovnyagin, D. Shulga","doi":"10.1109/EICONRUSNW.2016.7448158","DOIUrl":null,"url":null,"abstract":"The problem of choosing the cluster or a cluster node for task execution is important for the overall performance of a distributed system. This paper presents a complex approach to the planning of computations on heterogeneous distributed systems - a set of clusters and NoSQL storage systems. Dynamic scheduling algorithm depends on: the inter-cluster network parameters, characteristics of cluster interconnect, compute nodes utilization, co-processors computing capabilities, etc. In this work Hadoop YARN, CUDA technology and NoSQL-system Apache Cassandra has been used as the experimental platform.","PeriodicalId":262452,"journal":{"name":"2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUSNW.2016.7448158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The problem of choosing the cluster or a cluster node for task execution is important for the overall performance of a distributed system. This paper presents a complex approach to the planning of computations on heterogeneous distributed systems - a set of clusters and NoSQL storage systems. Dynamic scheduling algorithm depends on: the inter-cluster network parameters, characteristics of cluster interconnect, compute nodes utilization, co-processors computing capabilities, etc. In this work Hadoop YARN, CUDA technology and NoSQL-system Apache Cassandra has been used as the experimental platform.
软件开发框架为分布式存储和GPGPU数据处理基础设施
选择集群或集群节点执行任务的问题对于分布式系统的整体性能非常重要。本文提出了一种复杂的方法来规划异构分布式系统上的计算——一组集群和NoSQL存储系统。动态调度算法取决于:集群间网络参数、集群互联特性、计算节点利用率、协处理器计算能力等。本工作采用Hadoop YARN、CUDA技术和nosql系统Apache Cassandra作为实验平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信