Saturation momentum: From fixed to running coupling

D. Dietrich
{"title":"Saturation momentum: From fixed to running coupling","authors":"D. Dietrich","doi":"10.1556/APH.27.2006.2-3.26","DOIUrl":null,"url":null,"abstract":"Of late, it has been possible to establish and exploit connections between the evolution of parton distribution functions in quantum chromodynamics (QCD) and reaction diffusion systems in statistical physics. On that side stands the well studied Fischer-Kolmogorov-Petrovsky-Piscounov (FKPP) equation in its deterministic and stochastic (sFKPP) variants, respectively. On the side of QCD stand the JIMWLK equation, its recent extensions, and the Balitsky-Kovchegov (BK) equation. The key to extracting information on the solutions of the equation of motion in both fields is primarily the fact that both groups of equations describe the propagation into an unstable state. Unfortunately, the translation works mostly for the case of a fixed coupling constant only. Here, it is shown that, because the system is evolving away from an unstable fix point, it is possible to translate information from the fixed to the running coupling case. This is demonstrated for the saturation momentum in the regime of asymptotically high rapidities [1].","PeriodicalId":201208,"journal":{"name":"Acta Physica Hungarica A) Heavy Ion Physics","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Hungarica A) Heavy Ion Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/APH.27.2006.2-3.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Of late, it has been possible to establish and exploit connections between the evolution of parton distribution functions in quantum chromodynamics (QCD) and reaction diffusion systems in statistical physics. On that side stands the well studied Fischer-Kolmogorov-Petrovsky-Piscounov (FKPP) equation in its deterministic and stochastic (sFKPP) variants, respectively. On the side of QCD stand the JIMWLK equation, its recent extensions, and the Balitsky-Kovchegov (BK) equation. The key to extracting information on the solutions of the equation of motion in both fields is primarily the fact that both groups of equations describe the propagation into an unstable state. Unfortunately, the translation works mostly for the case of a fixed coupling constant only. Here, it is shown that, because the system is evolving away from an unstable fix point, it is possible to translate information from the fixed to the running coupling case. This is demonstrated for the saturation momentum in the regime of asymptotically high rapidities [1].
饱和动量:从固定耦合到运行耦合
近年来,已经有可能建立和利用量子色动力学(QCD)中部分子分布函数的演化与统计物理中的反应扩散系统之间的联系。在这一边,分别站着被充分研究的确定性和随机(sFKPP)变量的fisher - kolmogorov - petrovsky - piscounov (FKPP)方程。在QCD的一边是JIMWLK方程,它最近的扩展,以及Balitsky-Kovchegov (BK)方程。在这两个场中提取运动方程解信息的关键主要是这两组方程都描述了进入不稳定状态的传播。不幸的是,这种转换只适用于固定耦合常数的情况。在这里,它表明,因为系统是从一个不稳定的固定点演化而来的,所以有可能将信息从固定的情况转换为运行的耦合情况。这在渐近高速状态下的饱和动量中得到了证明[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信