Exploiting X-correlation in output compression via superset X-canceling

Jinsuk Chung, N. Touba
{"title":"Exploiting X-correlation in output compression via superset X-canceling","authors":"Jinsuk Chung, N. Touba","doi":"10.1109/VTS.2012.6231100","DOIUrl":null,"url":null,"abstract":"An alternative to masking unknown (X) values before the compactor (i.e., X-masking) is to capture X's in the MISR and cancel them out after compaction (i.e., X-canceling). Existing X-canceling methodologies require a number of control bits to perform the X-canceling that is linear in the number of X's to be canceled. This paper describes a new methodology for X-canceling which can exploit the fact that the scan cells in which X's are captured tend to be highly correlated in order to significantly reduce the number of control bits required for X-canceling. X's tend to be generated in certain portions of the design, and hence certain scan cells capture X's with much higher frequency than other scan cells. Instead of custom generating the control bits to cancel out only the X's in one MISR signature, the proposed approach finds a general superset solution which can cancel out the X's for many MISR signatures. This allows the same control bits to be reused many times thereby significantly improving the amount of compression that can be obtained. Architectures for implementing superset X-canceling are described along with experimental results.","PeriodicalId":169611,"journal":{"name":"2012 IEEE 30th VLSI Test Symposium (VTS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2012.6231100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An alternative to masking unknown (X) values before the compactor (i.e., X-masking) is to capture X's in the MISR and cancel them out after compaction (i.e., X-canceling). Existing X-canceling methodologies require a number of control bits to perform the X-canceling that is linear in the number of X's to be canceled. This paper describes a new methodology for X-canceling which can exploit the fact that the scan cells in which X's are captured tend to be highly correlated in order to significantly reduce the number of control bits required for X-canceling. X's tend to be generated in certain portions of the design, and hence certain scan cells capture X's with much higher frequency than other scan cells. Instead of custom generating the control bits to cancel out only the X's in one MISR signature, the proposed approach finds a general superset solution which can cancel out the X's for many MISR signatures. This allows the same control bits to be reused many times thereby significantly improving the amount of compression that can be obtained. Architectures for implementing superset X-canceling are described along with experimental results.
利用超集x抵消在输出压缩中的x相关性
在压缩器(即X屏蔽)之前屏蔽未知(X)值的另一种方法是捕获MISR中的X,并在压缩之后将其取消(即X取消)。现有的X消去方法需要一些控制位来执行X消去,X消去在要消去的X的数量上是线性的。本文描述了一种新的X消除方法,该方法可以利用捕获X的扫描单元倾向于高度相关的事实,以显着减少X消除所需的控制位的数量。X倾向于在设计的某些部分产生,因此某些扫描单元以比其他扫描单元高得多的频率捕获X。该方法不是自定义生成控制位来抵消一个MISR签名中的X,而是找到一个通用的超集解决方案,可以抵消许多MISR签名中的X。这使得相同的控制位可以被多次重用,从而显著提高了可以获得的压缩量。描述了实现超集x消去的体系结构,并给出了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信