{"title":"Data-driven model prediction and optimal control for interventional policy of a class of susceptible-infectious-removed dynamics with COVID-19 data","authors":"Chidentree Treesatayapun","doi":"10.1002/adc2.115","DOIUrl":null,"url":null,"abstract":"<p>Adaptive optimal-control and model prediction are proposed for a class of susceptible-infectious-removed dynamics according to the COVID-19 data. From the practical point of view, data sets of COVID-19 pandemics are daily collected and presented in a discrete-time sequence. Therefore, the discrete-time mathematical model of COVID-19 pandemics is formulated in this work. By developing the time-varying transmission rate, the model's accuracy is significantly contributed to the actual data of the COVID-19 pandemic. Furthermore, the interventional policy is derived by the proposed optimal controller when the closed-loop performance is guaranteed by theoretical aspects and numerical results.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Control for Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adc2.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptive optimal-control and model prediction are proposed for a class of susceptible-infectious-removed dynamics according to the COVID-19 data. From the practical point of view, data sets of COVID-19 pandemics are daily collected and presented in a discrete-time sequence. Therefore, the discrete-time mathematical model of COVID-19 pandemics is formulated in this work. By developing the time-varying transmission rate, the model's accuracy is significantly contributed to the actual data of the COVID-19 pandemic. Furthermore, the interventional policy is derived by the proposed optimal controller when the closed-loop performance is guaranteed by theoretical aspects and numerical results.