Detection of Traffic Signs Based on Support Vector Machine Classification Using HOG Features

David Coţovanu, C. Fosalau, C. Zet, M. Skoczylas
{"title":"Detection of Traffic Signs Based on Support Vector Machine Classification Using HOG Features","authors":"David Coţovanu, C. Fosalau, C. Zet, M. Skoczylas","doi":"10.1109/ICEPE.2018.8559784","DOIUrl":null,"url":null,"abstract":"Real time traffic sign recognition algorithms are in high demand as technology pushes for autonomous vehicles. Identifying traffic signs that regulate the flow of traffic provides another way to increase the safety of the driver and other road participants. In the present paper we propose an algorithm that introduces a filtering step which significantly reduces the processing times of an SVM based classification algorithm. Our approach uses the image processing techniques to identify regions of interest (ROIs) in an image, based on color information and on certain object properties. In the experiments, we evaluated our TSDR system on recordings of Romanian roads with traffic signs in various lighting conditions.","PeriodicalId":343896,"journal":{"name":"2018 International Conference and Exposition on Electrical And Power Engineering (EPE)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference and Exposition on Electrical And Power Engineering (EPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPE.2018.8559784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Real time traffic sign recognition algorithms are in high demand as technology pushes for autonomous vehicles. Identifying traffic signs that regulate the flow of traffic provides another way to increase the safety of the driver and other road participants. In the present paper we propose an algorithm that introduces a filtering step which significantly reduces the processing times of an SVM based classification algorithm. Our approach uses the image processing techniques to identify regions of interest (ROIs) in an image, based on color information and on certain object properties. In the experiments, we evaluated our TSDR system on recordings of Romanian roads with traffic signs in various lighting conditions.
基于HOG特征支持向量机分类的交通标志检测
随着自动驾驶汽车技术的发展,对实时交通标志识别算法的需求很大。识别调节交通流量的交通标志是提高驾驶员和其他道路参与者安全的另一种方式。在本文中,我们提出了一种算法,该算法引入了一个过滤步骤,大大减少了基于支持向量机的分类算法的处理时间。我们的方法使用图像处理技术来识别图像中的感兴趣区域(roi),基于颜色信息和某些对象属性。在实验中,我们评估了我们的TSDR系统在不同照明条件下的罗马尼亚道路交通标志的记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信