Risk-Averse Investment Optimization for Power System Resilience to Winter Storms

Manuel García, Brent Austgen, B. Pierre, J. Hasenbein, E. Kutanoglu
{"title":"Risk-Averse Investment Optimization for Power System Resilience to Winter Storms","authors":"Manuel García, Brent Austgen, B. Pierre, J. Hasenbein, E. Kutanoglu","doi":"10.1109/td43745.2022.9816875","DOIUrl":null,"url":null,"abstract":"We propose a two-stage scenario-based stochastic optimization problem to determine investments that enhance power system resilience. The proposed optimization problem minimizes the Conditional Value at Risk (CVaR) of load loss to target low-probability high-impact events. We provide results in the context of generator winterization investments in Texas using winter storm scenarios generated from historical data collected from Winter Storm Uri. Results illustrate how the CVaR metric can be used to minimize the tail of the distribution of load loss and illustrate how risk-aversity impacts investment decisions.","PeriodicalId":241987,"journal":{"name":"2022 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/td43745.2022.9816875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a two-stage scenario-based stochastic optimization problem to determine investments that enhance power system resilience. The proposed optimization problem minimizes the Conditional Value at Risk (CVaR) of load loss to target low-probability high-impact events. We provide results in the context of generator winterization investments in Texas using winter storm scenarios generated from historical data collected from Winter Storm Uri. Results illustrate how the CVaR metric can be used to minimize the tail of the distribution of load loss and illustrate how risk-aversity impacts investment decisions.
电力系统抵御冬季风暴的风险规避投资优化
我们提出了一个两阶段的基于场景的随机优化问题,以确定提高电力系统弹性的投资。提出的优化问题使负荷损失的条件风险值(CVaR)最小化,以针对低概率高影响事件。我们使用从冬季风暴Uri收集的历史数据生成的冬季风暴情景,在德克萨斯州的发电机冬季投资背景下提供结果。结果说明了CVaR指标如何用于最小化负荷损失分布的尾部,并说明了风险厌恶如何影响投资决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信