Modelling of direction-dependent dynamic processes: a comparison of Wiener models and neural networks

A. H. Tan, K. Godfrey
{"title":"Modelling of direction-dependent dynamic processes: a comparison of Wiener models and neural networks","authors":"A. H. Tan, K. Godfrey","doi":"10.1109/IMTC.2002.1006842","DOIUrl":null,"url":null,"abstract":"The modelling of direction-dependent processes using Wiener and neural network models is compared for several different processes and for three different types of input signal: a pseudorandom binary signal (prbs), an inverse-repeat pseudo-random binary signal (irprbs) and a multisine (sum of harmonics) signal. Experimental results on an electronic nose are presented to illustrate the applicability of the techniques discussed.","PeriodicalId":141111,"journal":{"name":"IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.2002.1006842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The modelling of direction-dependent processes using Wiener and neural network models is compared for several different processes and for three different types of input signal: a pseudorandom binary signal (prbs), an inverse-repeat pseudo-random binary signal (irprbs) and a multisine (sum of harmonics) signal. Experimental results on an electronic nose are presented to illustrate the applicability of the techniques discussed.
方向依赖动态过程的建模:维纳模型和神经网络的比较
使用维纳和神经网络模型的方向依赖过程的建模比较了几种不同的过程和三种不同类型的输入信号:伪随机二进制信号(prbs),反向重复伪随机二进制信号(irprbs)和多重正弦(谐波和)信号。在电子鼻上的实验结果说明了所讨论的技术的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信