L. Biswal, Chandan Bandyopadhyay, A. Chattopadhyay, R. Wille, R. Drechsler, H. Rahaman
{"title":"Nearest-Neighbor and Fault-Tolerant Quantum Circuit Implementation","authors":"L. Biswal, Chandan Bandyopadhyay, A. Chattopadhyay, R. Wille, R. Drechsler, H. Rahaman","doi":"10.1109/ISMVL.2016.48","DOIUrl":null,"url":null,"abstract":"The quest of achieving higher computing performance is driving the research on quantum computing, which is reporting new milestones almost on a daily basis. For practical quantum circuit design, fault tolerance is an essential condition. This is achieved by mapping the target functions into the Clifford+T group of elementary quantum gates. Furthermore, the application of error-correcting codes in quantum circuits requires the quantum gates to be formed between adjacent Qubits. In this work, we improve the state-of-the-art quantum circuit design by addressing both of the above challenges. First, we propose a novel mapping of Multiple-Control Toffoli (MCT) gates to Clifford+T group gates, which achieves lower gate count compared to earlier work. Secondly, we show a generic way to convert any Clifford+T circuit into a nearest neighbor one. We validate the efficacy of our approach with detailed experimental studies.","PeriodicalId":246194,"journal":{"name":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2016.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The quest of achieving higher computing performance is driving the research on quantum computing, which is reporting new milestones almost on a daily basis. For practical quantum circuit design, fault tolerance is an essential condition. This is achieved by mapping the target functions into the Clifford+T group of elementary quantum gates. Furthermore, the application of error-correcting codes in quantum circuits requires the quantum gates to be formed between adjacent Qubits. In this work, we improve the state-of-the-art quantum circuit design by addressing both of the above challenges. First, we propose a novel mapping of Multiple-Control Toffoli (MCT) gates to Clifford+T group gates, which achieves lower gate count compared to earlier work. Secondly, we show a generic way to convert any Clifford+T circuit into a nearest neighbor one. We validate the efficacy of our approach with detailed experimental studies.