Ravishankar Rao, S. Vrudhula, Krzysztof S. Berezowski
{"title":"Analytical results for design space exploration of multi-core processors employing thread migration","authors":"Ravishankar Rao, S. Vrudhula, Krzysztof S. Berezowski","doi":"10.1145/1393921.1393981","DOIUrl":null,"url":null,"abstract":"Migrating threads away from the hot cores in a multicore processor allows them to operate at up to higher speeds. While this technique has already attracted a lot of research effort, the majority of thread migration studies are simulation-based. Although they are valuable for micro-architectural level optimization, they require prohibitively long simulation times, and hence have limited value for early design space exploration. We derive closed form expressions for the steady-state throughput of a multicore processor that employs thread migration and throttling for thermal management. These expressions can be evaluated under a millisecond (vs days for cycle-accurate simulation), and allow designers greater flexibility in evaluating the trade-offs involved in implementing thread migration on-chip. We also developed a system-level power/thermal simulator that we used to validate the analytical results.","PeriodicalId":166672,"journal":{"name":"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1393921.1393981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Migrating threads away from the hot cores in a multicore processor allows them to operate at up to higher speeds. While this technique has already attracted a lot of research effort, the majority of thread migration studies are simulation-based. Although they are valuable for micro-architectural level optimization, they require prohibitively long simulation times, and hence have limited value for early design space exploration. We derive closed form expressions for the steady-state throughput of a multicore processor that employs thread migration and throttling for thermal management. These expressions can be evaluated under a millisecond (vs days for cycle-accurate simulation), and allow designers greater flexibility in evaluating the trade-offs involved in implementing thread migration on-chip. We also developed a system-level power/thermal simulator that we used to validate the analytical results.