Collaborative Computation Offloading Scheme Based on Deep Reinforcement Learning

Jinho Park, K. Chung
{"title":"Collaborative Computation Offloading Scheme Based on Deep Reinforcement Learning","authors":"Jinho Park, K. Chung","doi":"10.1109/icoin56518.2023.10048957","DOIUrl":null,"url":null,"abstract":"Deep Reinforcement Learning (DRL)-based computation offloading scheme has been proposed to improve the Quality of Experience (QoE). However, the existing DRL does not consider the temporal states because of the fully connected layer. Also, DRL learns the policy regardless of the importance of experience. To solve these problems, we propose a collaborative computation offloading scheme with DRL. First, we define the objective function about task service time and load balance. Second, we utilize the Least Absolute Shrinkage and Selection Operator (LASSO) regression in the backbone network for considering temporal states. Finally, we prioritize the experience according to the Temporal Difference (TD) error and learning loss. The simulation results show that the proposed scheme achieves high QoE due to low task service time and high load balance.","PeriodicalId":285763,"journal":{"name":"2023 International Conference on Information Networking (ICOIN)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icoin56518.2023.10048957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep Reinforcement Learning (DRL)-based computation offloading scheme has been proposed to improve the Quality of Experience (QoE). However, the existing DRL does not consider the temporal states because of the fully connected layer. Also, DRL learns the policy regardless of the importance of experience. To solve these problems, we propose a collaborative computation offloading scheme with DRL. First, we define the objective function about task service time and load balance. Second, we utilize the Least Absolute Shrinkage and Selection Operator (LASSO) regression in the backbone network for considering temporal states. Finally, we prioritize the experience according to the Temporal Difference (TD) error and learning loss. The simulation results show that the proposed scheme achieves high QoE due to low task service time and high load balance.
基于深度强化学习的协同计算卸载方案
提出了一种基于深度强化学习(DRL)的计算卸载方案来提高体验质量(QoE)。然而,由于全连接层的存在,现有的DRL并没有考虑时间状态。此外,无论经验的重要性如何,DRL都会学习策略。为了解决这些问题,我们提出了一种基于DRL的协同计算卸载方案。首先,我们定义了任务服务时间和负载平衡的目标函数。其次,我们在主干网中利用最小绝对收缩和选择算子(LASSO)回归来考虑时间状态。最后,我们根据时间差误差和学习损失对经验进行排序。仿真结果表明,该方案具有较低的任务服务时间和较高的负载均衡性,实现了较高的QoE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信