Poly(lactic acid) based polymer composites for biomedicine

S. M. Lebedev, I. Khlusov, D. M. Chistokhin
{"title":"Poly(lactic acid) based polymer composites for biomedicine","authors":"S. M. Lebedev, I. Khlusov, D. M. Chistokhin","doi":"10.17223/9785946219242/230","DOIUrl":null,"url":null,"abstract":"Main properties of biodegradable polymer composites on the base of poly(lactic acid) (PLA) filled with hydroxyapatite (HA) were studied by different methods such as dielectric spectroscopy in frequency domain, optical microscopy, wide-angle X-ray diffraction and tensile tests. All composites were fabricated by melt compounding. It has been found that values of real part of the complex permittivity of PLA-HA composites are increased by 15–30% compared to that for neat PLA, while loss factor tan8 does not exceed 0.02. The degree of crystallinity of PLA-HA composites is increased by 3.2 and 6.15 times with filling by HA from 25 to 50 wt % respectively compared to that for neat PLA. All studied mechanical parameters, except for Young's modulus, tend to decrease with increasing filler content due to an increase in the stiffness of composites.","PeriodicalId":408630,"journal":{"name":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/9785946219242/230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Main properties of biodegradable polymer composites on the base of poly(lactic acid) (PLA) filled with hydroxyapatite (HA) were studied by different methods such as dielectric spectroscopy in frequency domain, optical microscopy, wide-angle X-ray diffraction and tensile tests. All composites were fabricated by melt compounding. It has been found that values of real part of the complex permittivity of PLA-HA composites are increased by 15–30% compared to that for neat PLA, while loss factor tan8 does not exceed 0.02. The degree of crystallinity of PLA-HA composites is increased by 3.2 and 6.15 times with filling by HA from 25 to 50 wt % respectively compared to that for neat PLA. All studied mechanical parameters, except for Young's modulus, tend to decrease with increasing filler content due to an increase in the stiffness of composites.
生物医药用聚乳酸基高分子复合材料
采用频域介电光谱、光学显微镜、广角x射线衍射和拉伸试验等方法研究了羟基磷灰石(HA)填充聚乳酸(PLA)基可生物降解聚合物复合材料的主要性能。所有复合材料均采用熔体复合制备。研究发现,PLA- ha复合材料的复介电常数实部值比纯PLA提高了15-30%,而损耗因子tan8不超过0.02。与纯PLA相比,HA填充的PLA-HA复合材料的结晶度分别提高了3.2倍和6.15倍,从25%增加到50%。随着填料含量的增加,复合材料的刚度增加,除杨氏模量外,各力学参数均有减小的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信