Correlations between plasma induced damage and negative bias temperature instability in 65 nm bulk and thin-BOX FDSOI processes

Ryo Kishida, Kazutoshi Kobayashi
{"title":"Correlations between plasma induced damage and negative bias temperature instability in 65 nm bulk and thin-BOX FDSOI processes","authors":"Ryo Kishida, Kazutoshi Kobayashi","doi":"10.1109/S3S.2016.7804371","DOIUrl":null,"url":null,"abstract":"We evaluate Plasma Induced Damage (PID) and Negative Bias Temperature Instability (NBTI) by measuring frequency of Ring Oscillators (ROs). Initial frequency degradation by PID from Antenna Ratio (AR) of 500 to 1k are 2.1% and 1.9% in the bulk and thin-BOX FDSOI, respectively. NBTI is accelerated by PID in less than 500 AR which is the upper limit of the antenna rule. NBTI correlates with PID and also with initial frequency. The correlation coefficient (CC) between NBTI-induced degradations and the initial frequency is 0.68 in FDSOI, while there is few correlation in bulk (CC = 0.24) because random dopant fluctuation is dominant.","PeriodicalId":145660,"journal":{"name":"2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2016.7804371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We evaluate Plasma Induced Damage (PID) and Negative Bias Temperature Instability (NBTI) by measuring frequency of Ring Oscillators (ROs). Initial frequency degradation by PID from Antenna Ratio (AR) of 500 to 1k are 2.1% and 1.9% in the bulk and thin-BOX FDSOI, respectively. NBTI is accelerated by PID in less than 500 AR which is the upper limit of the antenna rule. NBTI correlates with PID and also with initial frequency. The correlation coefficient (CC) between NBTI-induced degradations and the initial frequency is 0.68 in FDSOI, while there is few correlation in bulk (CC = 0.24) because random dopant fluctuation is dominant.
等离子体诱导损伤与负偏置温度不稳定性在65nm块体和薄盒FDSOI工艺中的相关性
我们通过测量环形振荡器(ROs)的频率来评估等离子体诱导损伤(PID)和负偏置温度不稳定性(NBTI)。当天线比(AR)为500 ~ 1k时,体积FDSOI和薄盒FDSOI的初始频率衰减分别为2.1%和1.9%。在小于天线规则上限500ar的情况下,通过PID加速NBTI。NBTI与PID相关,也与初始频率相关。在FDSOI中,nbti诱导的降解与初始频率的相关系数(CC)为0.68,而在体积中,由于掺杂剂的随机波动占主导地位,相关系数(CC = 0.24)很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信