Neuroevolution Based Optimization of Hybrid Transmission Shift Points

J. Bower, Masood Shahverdi, David I. Blekhman
{"title":"Neuroevolution Based Optimization of Hybrid Transmission Shift Points","authors":"J. Bower, Masood Shahverdi, David I. Blekhman","doi":"10.1109/SUSTECH.2018.8671374","DOIUrl":null,"url":null,"abstract":"In a hybrid vehicle the speeds at which the transmission shifts between gears has a large impact on energy consumption. Dynamic Programming (DP) can be used to find the optimal transmission gear for a given torque and speed. Neuroevolution of Augmenting Topologies (NEAT) is then utilized to find the shift lines which allow the transmission to be at the most energy efficient point in an implementable way. Through this strategy, an improvement of 7% was achieved compared to the traditional approach.","PeriodicalId":127111,"journal":{"name":"2018 IEEE Conference on Technologies for Sustainability (SusTech)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Technologies for Sustainability (SusTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUSTECH.2018.8671374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In a hybrid vehicle the speeds at which the transmission shifts between gears has a large impact on energy consumption. Dynamic Programming (DP) can be used to find the optimal transmission gear for a given torque and speed. Neuroevolution of Augmenting Topologies (NEAT) is then utilized to find the shift lines which allow the transmission to be at the most energy efficient point in an implementable way. Through this strategy, an improvement of 7% was achieved compared to the traditional approach.
基于神经进化的混合动力变速器换挡点优化
在混合动力汽车中,变速器换档的速度对能源消耗有很大影响。动态规划(DP)可以用于寻找给定转矩和速度的最佳传动齿轮。然后利用增强拓扑的神经进化(NEAT)来找到允许传输以可实现的方式处于最节能点的移位线。通过这一策略,与传统方法相比,实现了7%的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信