Technical data analysis for movement prediction of Euro to USD using Genetic Algorithm-Neural Network

Ary Sespajayadi, Indrabayu, I. Nurtanio
{"title":"Technical data analysis for movement prediction of Euro to USD using Genetic Algorithm-Neural Network","authors":"Ary Sespajayadi, Indrabayu, I. Nurtanio","doi":"10.1109/ISITIA.2015.7219947","DOIUrl":null,"url":null,"abstract":"In the foreign currency exchange (FOREX), a technical data analysis system for predicting currency movements is needed to help traders in decision making. Thus, this study proposes a system of technical data analysis to movement prediction of Euro to USD using Genetic Algorithm-Neural Network (GANN). To generate a predicted value, Genetic Algorithm searching for the best value of Feed Forward Neural Network (FFNN) trained with the Neural Network method that produced a net to predict. The Validation of predicted results with GANN method based on the degree of accuracy as follows. RMSE values of open is 0.00043; The RMSE values of high is 0.00068; The RMSE value of low is 0.00075; and RMSE values of close is 0.00070.","PeriodicalId":124449,"journal":{"name":"2015 International Seminar on Intelligent Technology and Its Applications (ISITIA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Seminar on Intelligent Technology and Its Applications (ISITIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITIA.2015.7219947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In the foreign currency exchange (FOREX), a technical data analysis system for predicting currency movements is needed to help traders in decision making. Thus, this study proposes a system of technical data analysis to movement prediction of Euro to USD using Genetic Algorithm-Neural Network (GANN). To generate a predicted value, Genetic Algorithm searching for the best value of Feed Forward Neural Network (FFNN) trained with the Neural Network method that produced a net to predict. The Validation of predicted results with GANN method based on the degree of accuracy as follows. RMSE values of open is 0.00043; The RMSE values of high is 0.00068; The RMSE value of low is 0.00075; and RMSE values of close is 0.00070.
利用遗传算法-神经网络对欧元兑美元走势进行预测的技术数据分析
在外汇交易(FOREX)中,需要一个预测货币走势的技术数据分析系统来帮助交易者做出决策。因此,本研究提出了一种基于遗传算法-神经网络(GANN)的欧元对美元走势预测技术数据分析系统。为了生成预测值,采用遗传算法搜索最优值的前馈神经网络(FFNN),用神经网络训练的方法生成一个预测值。基于准确率的GANN方法预测结果验证如下。open的RMSE值为0.00043;高的RMSE值为0.00068;最低值RMSE值为0.00075;接近的RMSE值为0.00070。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信