Parameter Factorial Weighting of Federated Learning: Center-Client Access Strategy and Application Design

Huan Wang, Zerong Zeng, Ruifang Liu, Sheng Gao
{"title":"Parameter Factorial Weighting of Federated Learning: Center-Client Access Strategy and Application Design","authors":"Huan Wang, Zerong Zeng, Ruifang Liu, Sheng Gao","doi":"10.1109/ICAICE54393.2021.00041","DOIUrl":null,"url":null,"abstract":"Federated learning, using multi-party parameter sharing instead of data centralized training, effectively solves the data privacy and security problems in collaborative training, which has become an important research issue in recent years. In this paper, based on the previously proposed FedBN-PW-CTC model [1], we simulate realistic data and do supplementary experiments to further validate the effectiveness of the model and propose supplementary schemes and application scenarios, with the following main contributions. (1) We compare the training result of FedBN-PW-CTC model on both independently identically distribution (iid) data and non-iid data, and verify the effectiveness of parameter weighting (PW) on non-iid data. (2) We propose an asymmetric center-client access discrimination strategy for federated learning model. (3) A realistic application scenario, an intelligent federated learning-based elderly assistance service system, is proposed for the model, and we design the structure for the system.","PeriodicalId":388444,"journal":{"name":"2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICE54393.2021.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning, using multi-party parameter sharing instead of data centralized training, effectively solves the data privacy and security problems in collaborative training, which has become an important research issue in recent years. In this paper, based on the previously proposed FedBN-PW-CTC model [1], we simulate realistic data and do supplementary experiments to further validate the effectiveness of the model and propose supplementary schemes and application scenarios, with the following main contributions. (1) We compare the training result of FedBN-PW-CTC model on both independently identically distribution (iid) data and non-iid data, and verify the effectiveness of parameter weighting (PW) on non-iid data. (2) We propose an asymmetric center-client access discrimination strategy for federated learning model. (3) A realistic application scenario, an intelligent federated learning-based elderly assistance service system, is proposed for the model, and we design the structure for the system.
联邦学习的参数因子加权:中心-客户端访问策略与应用设计
联邦学习采用多方参数共享代替数据集中训练,有效解决了协同训练中的数据隐私和安全问题,成为近年来的重要研究课题。本文在前人提出的FedBN-PW-CTC模型[1]的基础上,通过对现实数据的模拟和补充实验,进一步验证了模型的有效性,提出了补充方案和应用场景,主要贡献如下:(1)比较FedBN-PW-CTC模型在独立同分布(iid)数据和非独立同分布数据上的训练结果,验证参数加权(PW)在非独立同分布数据上的有效性。(2)针对联邦学习模型提出了一种非对称的中心-客户端访问判别策略。(3)提出了该模型的实际应用场景——基于智能联邦学习的老年救助服务系统,并对系统结构进行了设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信