A Bayesian nonparametric approach to option pricing

Zhang Qin, Caio Almeida
{"title":"A Bayesian nonparametric approach to option pricing","authors":"Zhang Qin, Caio Almeida","doi":"10.12660/rbfin.v18n4.2020.81913","DOIUrl":null,"url":null,"abstract":"Accurately modeling the implied volatility surface is of great importance to option pricing, trading and hedging. In this paper, we investigate the use of a Bayesian nonparametric approach to fit and forecast the implied volatility surface with observed market data. More specifically, we explore Gaussian Processes with different kernel functions characterizing general covariance functions. We also obtain posterior distributions of the implied volatility and build confidence intervals for the predictions to assess potential model uncertainty. We apply our approach to market data on the S&P 500 index option market in 2018, analyzing 322,983 options. Our results suggest that the Bayesian approach is a powerful alternative to existing parametric pricing models.","PeriodicalId":152637,"journal":{"name":"Brazilian Review of Finance","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Review of Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12660/rbfin.v18n4.2020.81913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurately modeling the implied volatility surface is of great importance to option pricing, trading and hedging. In this paper, we investigate the use of a Bayesian nonparametric approach to fit and forecast the implied volatility surface with observed market data. More specifically, we explore Gaussian Processes with different kernel functions characterizing general covariance functions. We also obtain posterior distributions of the implied volatility and build confidence intervals for the predictions to assess potential model uncertainty. We apply our approach to market data on the S&P 500 index option market in 2018, analyzing 322,983 options. Our results suggest that the Bayesian approach is a powerful alternative to existing parametric pricing models.
期权定价的贝叶斯非参数方法
准确建模隐含波动率面对期权定价、交易和套期保值具有重要意义。在本文中,我们研究了使用贝叶斯非参数方法来拟合和预测隐含波动率面与观察到的市场数据。更具体地说,我们探索具有不同核函数表征一般协方差函数的高斯过程。我们还获得了隐含波动率的后验分布,并建立了预测的置信区间,以评估潜在的模型不确定性。我们将我们的方法应用于2018年标准普尔500指数期权市场的市场数据,分析了322,983个期权。我们的研究结果表明,贝叶斯方法是现有参数定价模型的一个强大的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信