Neural network near-optimal motion planning for a mobile robot on binary and varied terrains

A. Ho, G. Fox
{"title":"Neural network near-optimal motion planning for a mobile robot on binary and varied terrains","authors":"A. Ho, G. Fox","doi":"10.1109/IROS.1990.262453","DOIUrl":null,"url":null,"abstract":"Presents an efficient approach to plan a near-optimal collision-free path for a mobile robot on binary or varied terrains. Motion planning is formulated as a classification problem in which class labels are uniquely mapped onto the set of maneuverable robot motions. The neural network motion planner is an implementation of the popular adaptive error backpropagation model. The motion planner learns to plan 'good', if not optimal, collision-free path from supervision in the form of training samples. A multi-scale representational scheme, as a consequence of a vision-based terrain sampling strategy, maps physical problem domains onto an arbitrarily chosen fixed size input layer of an error back propagation network. The mapping does not only reduce the size of the computation domain, but also ensures applicability of a trained network over a wide range of problem sizes.<<ETX>>","PeriodicalId":409624,"journal":{"name":"EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1990.262453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Presents an efficient approach to plan a near-optimal collision-free path for a mobile robot on binary or varied terrains. Motion planning is formulated as a classification problem in which class labels are uniquely mapped onto the set of maneuverable robot motions. The neural network motion planner is an implementation of the popular adaptive error backpropagation model. The motion planner learns to plan 'good', if not optimal, collision-free path from supervision in the form of training samples. A multi-scale representational scheme, as a consequence of a vision-based terrain sampling strategy, maps physical problem domains onto an arbitrarily chosen fixed size input layer of an error back propagation network. The mapping does not only reduce the size of the computation domain, but also ensures applicability of a trained network over a wide range of problem sizes.<>
基于神经网络的移动机器人二元地形近最优运动规划
提出了一种在二元或可变地形上规划移动机器人近最优无碰撞路径的有效方法。运动规划是一个分类问题,在分类问题中,类标签被唯一地映射到可操作的机器人运动集上。神经网络运动规划器是一种流行的自适应误差反向传播模型的实现。运动规划器学习以训练样本的形式从监督中规划出“好的”(如果不是最优的)无碰撞路径。多尺度表示方案是基于视觉的地形采样策略的结果,将物理问题域映射到任意选择的固定大小的误差反向传播网络输入层上。这种映射不仅减少了计算域的大小,而且还确保了训练后的网络在大范围问题规模上的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信