A Mixed HW-SW System for Fast Codebook Generation with the LBG Algorithm

A. Ramírez-Agundis, R. Gadea-Gironés, R. Colom-Palero, J. Díaz-Carmona
{"title":"A Mixed HW-SW System for Fast Codebook Generation with the LBG Algorithm","authors":"A. Ramírez-Agundis, R. Gadea-Gironés, R. Colom-Palero, J. Díaz-Carmona","doi":"10.1109/ENICS.2008.31","DOIUrl":null,"url":null,"abstract":"This paper presents the logical structure and physical design of a mixed software-hardware system developed for fast codebook generation using the well known LBG algorithm. The system uses a neurocoprocessor based on a Self Organization Feature Map (SOM) in order to make a HW-SW partition of algorithm tasks. The clustering task, the most time demanding, is carried out by hardware, exploiting the intrinsic parallelism of neural networks. The reduction in the required amount of sequential operations is proportional to 2N/Log2N, where N is the codebook final size. The experimentation showed a training time reduction up to 90%.","PeriodicalId":162793,"journal":{"name":"2008 International Conference on Advances in Electronics and Micro-electronics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Advances in Electronics and Micro-electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENICS.2008.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents the logical structure and physical design of a mixed software-hardware system developed for fast codebook generation using the well known LBG algorithm. The system uses a neurocoprocessor based on a Self Organization Feature Map (SOM) in order to make a HW-SW partition of algorithm tasks. The clustering task, the most time demanding, is carried out by hardware, exploiting the intrinsic parallelism of neural networks. The reduction in the required amount of sequential operations is proportional to 2N/Log2N, where N is the codebook final size. The experimentation showed a training time reduction up to 90%.
基于LBG算法的快速码本生成混合HW-SW系统
本文介绍了采用LBG算法开发的快速码本生成的软硬件混合系统的逻辑结构和物理设计。该系统采用基于自组织特征映射(SOM)的神经协处理器对算法任务进行HW-SW划分。聚类任务是利用神经网络固有的并行性,由硬件来完成,这是最耗时的任务。顺序操作所需数量的减少与2N/Log2N成正比,其中N是码本的最终大小。实验表明,训练时间减少了90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信