Autoregressive moving average modeling of late reverberation in the frequency domain

Simon Leglaive, R. Badeau, G. Richard
{"title":"Autoregressive moving average modeling of late reverberation in the frequency domain","authors":"Simon Leglaive, R. Badeau, G. Richard","doi":"10.1109/EUSIPCO.2016.7760494","DOIUrl":null,"url":null,"abstract":"In this paper, the late part of a room response is modeled in the frequency domain as a complex Gaussian random process. The autocovariance function (ACVF) and power spectral density (PSD) are theoretically defined from the exponential decay of the late reverberation power. Furthermore we show that the ACVF and PSD are accurately parametrized by an autoregressive moving average (ARMA) model. This leads to a new generative model of late reverberation in the frequency domain. The ARMA parameters are easily estimated from the theoretical ACVF. The statistical characterization is consistent with empirical results on simulated and real data. This model could be used to incorporate priors in audio source separation and dereverberation.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, the late part of a room response is modeled in the frequency domain as a complex Gaussian random process. The autocovariance function (ACVF) and power spectral density (PSD) are theoretically defined from the exponential decay of the late reverberation power. Furthermore we show that the ACVF and PSD are accurately parametrized by an autoregressive moving average (ARMA) model. This leads to a new generative model of late reverberation in the frequency domain. The ARMA parameters are easily estimated from the theoretical ACVF. The statistical characterization is consistent with empirical results on simulated and real data. This model could be used to incorporate priors in audio source separation and dereverberation.
频域晚期混响的自回归移动平均模拟
本文将房间响应的后期在频域上建模为一个复杂的高斯随机过程。自协方差函数(ACVF)和功率谱密度(PSD)是根据后期混响功率的指数衰减从理论上定义的。此外,我们还证明了自回归移动平均(ARMA)模型可以准确地参数化ACVF和PSD。这导致了一个新的生成模型的晚混响在频域。从理论ACVF可以很容易地估计出ARMA参数。在模拟数据和真实数据上的统计特征与实证结果一致。该模型可用于合并音源分离和去噪的先验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信