Ю И Скалько, Yu I Skalko, С Е Гриднев, S. Y. Gridnev
{"title":"Фундаментальное решение оператора задачи и его применение для приближенного решения начально-краевых задач","authors":"Ю И Скалько, Yu I Skalko, С Е Гриднев, S. Y. Gridnev","doi":"10.36535/0233-6723-2021-193-110-121","DOIUrl":null,"url":null,"abstract":"В работе построено приближение фундаментального решения оператора задачи для гиперболической системы линейных дифференциальных уравнений первого порядка с постоянными коэффициентами. Предложен алгоритм приближенного решения обобщенной задачи Римана о распаде разрыва при наличии дополнительных условий на границах. Предложенный алгоритм сводит задачу нахождения значений переменных по обе стороны поверхности разрыва начальных данных к решению системы алгебраических уравнений с правой частью, зависящей от значений переменных в начальный момент времени в конечном числе точек. На основе этих решений построен вычислительный алгоритм приближенного решения начально-краевой задачи для гиперболической системы линейных дифференциальных уравнений первого порядка. Алгоритм реализован для системы уравнений упругой динамики и использован для решения некоторых прикладных задач, связанных с нефтедобычей.","PeriodicalId":283651,"journal":{"name":"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36535/0233-6723-2021-193-110-121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
В работе построено приближение фундаментального решения оператора задачи для гиперболической системы линейных дифференциальных уравнений первого порядка с постоянными коэффициентами. Предложен алгоритм приближенного решения обобщенной задачи Римана о распаде разрыва при наличии дополнительных условий на границах. Предложенный алгоритм сводит задачу нахождения значений переменных по обе стороны поверхности разрыва начальных данных к решению системы алгебраических уравнений с правой частью, зависящей от значений переменных в начальный момент времени в конечном числе точек. На основе этих решений построен вычислительный алгоритм приближенного решения начально-краевой задачи для гиперболической системы линейных дифференциальных уравнений первого порядка. Алгоритм реализован для системы уравнений упругой динамики и использован для решения некоторых прикладных задач, связанных с нефтедобычей.