Detection of independently moving objects through stereo vision and ego-motion extraction

A. Bak, S. Bouchafa, D. Aubert
{"title":"Detection of independently moving objects through stereo vision and ego-motion extraction","authors":"A. Bak, S. Bouchafa, D. Aubert","doi":"10.1109/IVS.2010.5548108","DOIUrl":null,"url":null,"abstract":"Vision-based autonomous vehicles must face numerous challenges in order to be effective in practical areas. Among these lies the detection and localization of independent-moving objects, so as to track or avoid them. In this paper a method that address this particular issue is presented. Information from stereo and motion is used to extract the ego-motion of the vehicle. Known defects of this estimation are exploited to detect independent-moving obstacles. This method allows an early and reliable detection, even for objects partially occluded. Besides, it highlights the errors in the disparity map, which can be used, in future works, to correct depth-estimation, through motion-estimation.","PeriodicalId":123266,"journal":{"name":"2010 IEEE Intelligent Vehicles Symposium","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2010.5548108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Vision-based autonomous vehicles must face numerous challenges in order to be effective in practical areas. Among these lies the detection and localization of independent-moving objects, so as to track or avoid them. In this paper a method that address this particular issue is presented. Information from stereo and motion is used to extract the ego-motion of the vehicle. Known defects of this estimation are exploited to detect independent-moving obstacles. This method allows an early and reliable detection, even for objects partially occluded. Besides, it highlights the errors in the disparity map, which can be used, in future works, to correct depth-estimation, through motion-estimation.
通过立体视觉和自我运动提取来检测独立运动物体
基于视觉的自动驾驶汽车要想在实际应用中发挥作用,必须面临诸多挑战。其中包括对独立运动物体的检测和定位,从而跟踪或避开它们。本文提出了一种解决这一特殊问题的方法。利用立体和运动信息提取车辆的自我运动。利用这种估计的已知缺陷来检测独立移动的障碍物。这种方法允许早期和可靠的检测,即使是部分遮挡的物体。此外,它还突出了视差图中的误差,可以在以后的工作中通过运动估计来纠正深度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信