WiSARD: A Labeled Visual and Thermal Image Dataset for Wilderness Search and Rescue

Daniel Broyles, Christopher R. Hayner, Karen Leung
{"title":"WiSARD: A Labeled Visual and Thermal Image Dataset for Wilderness Search and Rescue","authors":"Daniel Broyles, Christopher R. Hayner, Karen Leung","doi":"10.1109/IROS47612.2022.9981298","DOIUrl":null,"url":null,"abstract":"Sensor-equipped unoccupied aerial vehicles (UAVs) have the potential to help reduce search times and alleviate safety risks for first responders carrying out Wilderness Search and Rescue (WiSAR) operations, the process of finding and rescuing person(s) lost in wilderness areas. Unfortunately, visual sensors alone do not address the need for robustness across all the possible terrains, weather, and lighting conditions that WiSAR operations can be conducted in. The use of multi-modal sensors, specifically visual-thermal cameras, is critical in enabling WiSAR UAVs to perform in diverse operating conditions. However, due to the unique challenges posed by the wilderness context, existing dataset benchmarks are inadequate for developing vision-based algorithms for autonomous WiSAR UAVs. To this end, we present WiSARD, a dataset with roughly 56,000 labeled visual and thermal images collected from UAV flights in various terrains, seasons, weather, and lighting conditions. To the best of our knowledge, WiSARD is the first large-scale dataset collected with multi-modal sensors for autonomous WiSAR operations. We envision that our dataset will provide researchers with a diverse and challenging benchmark that can test the robustness of their algorithms when applied to real-world (life-saving) applications. Link to dataset: https://sites.google.com/uw.edu/wisard/","PeriodicalId":431373,"journal":{"name":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS47612.2022.9981298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Sensor-equipped unoccupied aerial vehicles (UAVs) have the potential to help reduce search times and alleviate safety risks for first responders carrying out Wilderness Search and Rescue (WiSAR) operations, the process of finding and rescuing person(s) lost in wilderness areas. Unfortunately, visual sensors alone do not address the need for robustness across all the possible terrains, weather, and lighting conditions that WiSAR operations can be conducted in. The use of multi-modal sensors, specifically visual-thermal cameras, is critical in enabling WiSAR UAVs to perform in diverse operating conditions. However, due to the unique challenges posed by the wilderness context, existing dataset benchmarks are inadequate for developing vision-based algorithms for autonomous WiSAR UAVs. To this end, we present WiSARD, a dataset with roughly 56,000 labeled visual and thermal images collected from UAV flights in various terrains, seasons, weather, and lighting conditions. To the best of our knowledge, WiSARD is the first large-scale dataset collected with multi-modal sensors for autonomous WiSAR operations. We envision that our dataset will provide researchers with a diverse and challenging benchmark that can test the robustness of their algorithms when applied to real-world (life-saving) applications. Link to dataset: https://sites.google.com/uw.edu/wisard/
用于荒野搜索和救援的标记视觉和热图像数据集
配备传感器的无人驾驶飞行器(uav)有可能帮助减少搜索时间,减轻执行荒野搜索和救援(WiSAR)行动的急救人员的安全风险,在荒野地区寻找和救援失踪人员的过程。不幸的是,视觉传感器本身并不能满足在所有可能的地形、天气和光照条件下进行WiSAR操作的鲁棒性需求。使用多模态传感器,特别是视觉热摄像机,对于使WiSAR无人机能够在不同的操作条件下执行任务至关重要。然而,由于荒野环境带来的独特挑战,现有的数据集基准不足以为自主WiSAR无人机开发基于视觉的算法。为此,我们提出了WiSARD,这是一个数据集,包含大约56,000个标记的视觉和热图像,这些图像来自无人机在各种地形,季节,天气和照明条件下的飞行。据我们所知,WiSARD是第一个使用多模态传感器收集的大规模数据集,用于自主WiSAR操作。我们设想,我们的数据集将为研究人员提供一个多样化和具有挑战性的基准,可以测试他们的算法在应用于现实世界(拯救生命)应用时的鲁棒性。链接到数据集:https://sites.google.com/uw.edu/wisard/
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信