D. Sotskov, N. Usachev, V. Elesin, A. G. Kuznetsov, K. Amburkin, G. Chukov, M. I. Titova, N. M. Zidkov
{"title":"D-mode pHEMT 0.5 um Process Characterization to Wide-Band LNA Design","authors":"D. Sotskov, N. Usachev, V. Elesin, A. G. Kuznetsov, K. Amburkin, G. Chukov, M. I. Titova, N. M. Zidkov","doi":"10.1109/MIEL.2019.8889636","DOIUrl":null,"url":null,"abstract":"Results of domestic D-mode pHEMT 0.5 µm process characterization obtained during the design and testing of the single power supply wide-band low noise amplifier (LNA) are present. The simulation and test results demonstrate that designed cascode LNA has operating frequency range up to 3.5 GHz, power gain above 15 dB, noise figure below 2.2 dB, output linearity above than 17 dBm and power consumption less than 325 mW. Potential immunity of LNA to total ionizing dose and destructive single event effects exceed 300 krad and 60 MeV·cm2/mg respectively.","PeriodicalId":391606,"journal":{"name":"2019 IEEE 31st International Conference on Microelectronics (MIEL)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Microelectronics (MIEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIEL.2019.8889636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Results of domestic D-mode pHEMT 0.5 µm process characterization obtained during the design and testing of the single power supply wide-band low noise amplifier (LNA) are present. The simulation and test results demonstrate that designed cascode LNA has operating frequency range up to 3.5 GHz, power gain above 15 dB, noise figure below 2.2 dB, output linearity above than 17 dBm and power consumption less than 325 mW. Potential immunity of LNA to total ionizing dose and destructive single event effects exceed 300 krad and 60 MeV·cm2/mg respectively.