Features extraction of EEG signals using approximate and sample entropy

Y. Kumar, M. Dewal, R. S. Anand
{"title":"Features extraction of EEG signals using approximate and sample entropy","authors":"Y. Kumar, M. Dewal, R. S. Anand","doi":"10.1109/SCEECS.2012.6184830","DOIUrl":null,"url":null,"abstract":"There are numerous types of mental and neurological disorder where the electroencephalogram (EEG) data size is too long and requires a long time to observe the data by clinician. EEG waveform may contain valuable and useful information about the different states of the brain. Since biological signal is highly random in both time and frequency domain. Thus the computerized analysis is necessary. Being a non-stationary signal, suitable analysis is essential for EEG to differentiate the normal/epileptic and alcoholic/control EEG signals. Approximate entropy (ApEn) and Sample entropy (SampEn) are used to take out the quantitative entropy features from the different types of EEG time series. Average value of ApEn and SampEn for epileptic time series is less than non epileptic time series. Similarly ApEn and SampEn values for alcoholic EEG time series is less than non-alcoholic or control EEG signal.","PeriodicalId":372799,"journal":{"name":"2012 IEEE Students' Conference on Electrical, Electronics and Computer Science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Students' Conference on Electrical, Electronics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCEECS.2012.6184830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

There are numerous types of mental and neurological disorder where the electroencephalogram (EEG) data size is too long and requires a long time to observe the data by clinician. EEG waveform may contain valuable and useful information about the different states of the brain. Since biological signal is highly random in both time and frequency domain. Thus the computerized analysis is necessary. Being a non-stationary signal, suitable analysis is essential for EEG to differentiate the normal/epileptic and alcoholic/control EEG signals. Approximate entropy (ApEn) and Sample entropy (SampEn) are used to take out the quantitative entropy features from the different types of EEG time series. Average value of ApEn and SampEn for epileptic time series is less than non epileptic time series. Similarly ApEn and SampEn values for alcoholic EEG time series is less than non-alcoholic or control EEG signal.
基于近似熵和样本熵的脑电信号特征提取
有许多类型的精神和神经障碍的脑电图(EEG)数据量太长,需要很长时间的临床医生观察数据。脑电图波形可能包含关于大脑不同状态的有价值和有用的信息。由于生物信号在时域和频域都是高度随机的。因此,计算机化分析是必要的。作为一种非平稳信号,适当的分析对于区分正常/癫痫和酒精/控制脑电信号至关重要。利用近似熵(ApEn)和样本熵(SampEn)从不同类型的脑电时间序列中提取定量熵特征。癫痫时间序列的ApEn和SampEn平均值小于非癫痫时间序列。同样,酒精性脑电信号时间序列的ApEn和SampEn值小于非酒精性脑电信号或对照脑电信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信