{"title":"Utilization of Departmental Computing GRID System for Development of an Artificial Intelligent Tapping Inspection Method, Tapping Sound Analysis","authors":"S. Kim, J. Hwang, C. Lee, Sangsan Lee","doi":"10.1109/SC.2002.10018","DOIUrl":null,"url":null,"abstract":"Tapping Sound Analysis is a new NDE method, which determines the existence of subsurface defects by comparing the tapping sound of test structure and original healthy structure. The tapping sound of original healthy structure is named sound print of the structure and is obtained through high precision computation. Because many tapping points are required to obtain the exact sound print data, many times of tapping sound simulation are required. The simulation of tapping sound requires complicated numerical procedures. Departmental Computing GRID system was utilized to run numerical simulations. Three cluster systems and one PC-farm system comprise DCG system. Tapping sound simulations were launched and monitored through Globus and CONDOR. A total of 160 Tera floating-point (double-precision) operations was performed and the elapsed time was 41,880 sec. From the numerical experiments, Grid computing technology reduced the necessary time to make sound print database and made TSA a feasible and practical methodology.","PeriodicalId":302800,"journal":{"name":"ACM/IEEE SC 2002 Conference (SC'02)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2002 Conference (SC'02)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2002.10018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Tapping Sound Analysis is a new NDE method, which determines the existence of subsurface defects by comparing the tapping sound of test structure and original healthy structure. The tapping sound of original healthy structure is named sound print of the structure and is obtained through high precision computation. Because many tapping points are required to obtain the exact sound print data, many times of tapping sound simulation are required. The simulation of tapping sound requires complicated numerical procedures. Departmental Computing GRID system was utilized to run numerical simulations. Three cluster systems and one PC-farm system comprise DCG system. Tapping sound simulations were launched and monitored through Globus and CONDOR. A total of 160 Tera floating-point (double-precision) operations was performed and the elapsed time was 41,880 sec. From the numerical experiments, Grid computing technology reduced the necessary time to make sound print database and made TSA a feasible and practical methodology.