Efficient myocardial ischemia classifier based on statistical features with random weight settings

H. Murthy, M. Meenakshi
{"title":"Efficient myocardial ischemia classifier based on statistical features with random weight settings","authors":"H. Murthy, M. Meenakshi","doi":"10.1109/CSPC.2017.8305814","DOIUrl":null,"url":null,"abstract":"The novelty of this work is extracting the multiple statistical features from denoised ECG beat segment for an ANN classifier which is trained and tested by considering 10 different values of random weights and biases for optimum choice of classifier architecture. The proposed MLP neural network receives the statistical features extracted from preprocessed ECG beat segment and trained with Levenberg-Marquardt algorithm. To demonstrate the efficacy of the ANN classifier, training and testing datasets are chosen from European ST-T datasets of physiobank database. The performance of ANN model is compared with K-nearest neighbor (KNN) and support vector machine (SVM) classifiers. The experimental results confirmed that the ANN model with 12 hidden neurons outperformed with overall classification accuracy of 92.85 %.","PeriodicalId":123773,"journal":{"name":"2017 International Conference on Signal Processing and Communication (ICSPC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Signal Processing and Communication (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPC.2017.8305814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The novelty of this work is extracting the multiple statistical features from denoised ECG beat segment for an ANN classifier which is trained and tested by considering 10 different values of random weights and biases for optimum choice of classifier architecture. The proposed MLP neural network receives the statistical features extracted from preprocessed ECG beat segment and trained with Levenberg-Marquardt algorithm. To demonstrate the efficacy of the ANN classifier, training and testing datasets are chosen from European ST-T datasets of physiobank database. The performance of ANN model is compared with K-nearest neighbor (KNN) and support vector machine (SVM) classifiers. The experimental results confirmed that the ANN model with 12 hidden neurons outperformed with overall classification accuracy of 92.85 %.
基于随机权值设置统计特征的高效心肌缺血分类器
这项工作的新颖之处在于从去噪的心电心跳段中提取多个统计特征,用于人工神经网络分类器,该分类器通过考虑10个不同的随机权重和偏差值来训练和测试,以优化分类器结构的选择。所提出的MLP神经网络接收预处理心电拍段提取的统计特征,并使用Levenberg-Marquardt算法进行训练。为了证明人工神经网络分类器的有效性,训练和测试数据集选择自physiobank数据库的欧洲ST-T数据集。将该模型与k近邻分类器(KNN)和支持向量机分类器(SVM)进行了性能比较。实验结果证实,包含12个隐藏神经元的ANN模型总体分类准确率为92.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信