Reliable detection of abnormal ozone measurements using an air quality sensors network

F. Harrou, Abdelkader Dairi, Ying Sun, M. Senouci
{"title":"Reliable detection of abnormal ozone measurements using an air quality sensors network","authors":"F. Harrou, Abdelkader Dairi, Ying Sun, M. Senouci","doi":"10.1109/EE1.2018.8385265","DOIUrl":null,"url":null,"abstract":"Ozone pollution is one of the most important pollutants that have a negative effect on human health and the ecosystem. An effective statistical methodology to detect abnormal ozone measurements is proposed in this study. We used a Deep Belief Network model to account for nonlinear variation of ground-level ozone concentrations, in combination with a one-class support vector machine, for detecting abnormal ozone measurement. We assessed the efficiency of this methodology by using real data from a network of air quality monitoring systems in Isère, France. Results demonstrated the capability of the proposed strategy to identify abnormalities in ozone measurements.","PeriodicalId":173047,"journal":{"name":"2018 IEEE International Conference on Environmental Engineering (EE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Environmental Engineering (EE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EE1.2018.8385265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Ozone pollution is one of the most important pollutants that have a negative effect on human health and the ecosystem. An effective statistical methodology to detect abnormal ozone measurements is proposed in this study. We used a Deep Belief Network model to account for nonlinear variation of ground-level ozone concentrations, in combination with a one-class support vector machine, for detecting abnormal ozone measurement. We assessed the efficiency of this methodology by using real data from a network of air quality monitoring systems in Isère, France. Results demonstrated the capability of the proposed strategy to identify abnormalities in ozone measurements.
利用空气质素传感器网络可靠地侦测异常臭氧测量值
臭氧污染是危害人类健康和生态系统的重要污染物之一。本研究提出了一种有效的统计方法来检测异常的臭氧测量。我们使用深度信念网络模型来解释地面臭氧浓度的非线性变化,并结合一类支持向量机来检测异常臭氧测量。我们通过使用来自法国is的空气质量监测系统网络的真实数据来评估这种方法的效率。结果证明了所提出的策略识别臭氧测量异常的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信