{"title":"The formal verification of a pipelined double-precision IEEE floating-point multiplier","authors":"M. Aagaard, C. Seger","doi":"10.1109/ICCAD.1995.479878","DOIUrl":null,"url":null,"abstract":"Floating-point circuits are notoriously difficult to design and verify. For verification, simulation barely offers adequate coverage, conventional model-checking techniques are infeasible, and theorem-proving based verification is not sufficiently mature. In this paper we present the formal verification of a radix-eight, pipelined, IEEE double-precision floating-point multiplier. The verification was carried out using a mixture of model-checking and theorem-proving techniques in the Voss hardware verification system. By combining model-checking and theorem-proving we were able to build on the strengths of both areas and achieve significant results with a reasonable amount of effort.","PeriodicalId":367501,"journal":{"name":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1995.479878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63
Abstract
Floating-point circuits are notoriously difficult to design and verify. For verification, simulation barely offers adequate coverage, conventional model-checking techniques are infeasible, and theorem-proving based verification is not sufficiently mature. In this paper we present the formal verification of a radix-eight, pipelined, IEEE double-precision floating-point multiplier. The verification was carried out using a mixture of model-checking and theorem-proving techniques in the Voss hardware verification system. By combining model-checking and theorem-proving we were able to build on the strengths of both areas and achieve significant results with a reasonable amount of effort.