Etch rate prediction in plasma etching using feed forward Error-Back Propagation neural network model

Ha-Deok Song, Ho-Taek Noh, Dong-Il Kim, Seung-Soo Han
{"title":"Etch rate prediction in plasma etching using feed forward Error-Back Propagation neural network model","authors":"Ha-Deok Song, Ho-Taek Noh, Dong-Il Kim, Seung-Soo Han","doi":"10.1109/CSTIC.2015.7153456","DOIUrl":null,"url":null,"abstract":"In this paper, a Virtual Metrology (VM) model is proposed to predict etch rate which is one of the most important etching profile in etch process. Error Back Propagation (EBP) neural network is used to make the VM for etch rate prediction. Etching process recipe data obtained through the Design of Experiments (DOE) are used to train the VM. The etch rate data are gained through the experiments, and the EBP neural VM model is trained to satisfy the allowable error between predicted etch rate and experimental etch rate. With this trained EBP neural network VM model, it can be possible to predict the etch rate without real experiments.","PeriodicalId":130108,"journal":{"name":"2015 China Semiconductor Technology International Conference","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 China Semiconductor Technology International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC.2015.7153456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a Virtual Metrology (VM) model is proposed to predict etch rate which is one of the most important etching profile in etch process. Error Back Propagation (EBP) neural network is used to make the VM for etch rate prediction. Etching process recipe data obtained through the Design of Experiments (DOE) are used to train the VM. The etch rate data are gained through the experiments, and the EBP neural VM model is trained to satisfy the allowable error between predicted etch rate and experimental etch rate. With this trained EBP neural network VM model, it can be possible to predict the etch rate without real experiments.
利用前馈误差-反向传播神经网络模型预测等离子体刻蚀速率
蚀刻速率是蚀刻过程中最重要的蚀刻参数之一,本文提出了一种虚拟计量模型来预测蚀刻速率。采用误差反向传播(Error Back Propagation, EBP)神经网络构造虚拟机进行蚀刻速率预测。通过实验设计(DOE)获得的蚀刻工艺配方数据用于训练虚拟机。通过实验获取刻蚀速率数据,训练EBP神经虚拟机模型,使其满足预测刻蚀速率与实验刻蚀速率之间的允许误差。利用这种训练好的EBP神经网络虚拟机模型,可以在不需要实际实验的情况下预测蚀刻速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信