{"title":"Strong measurement and quantum feedback for persistent Rabi oscillations in circuit QED experiments","authors":"M. Mirrahimi, B. Huard, M. Devoret","doi":"10.1109/CDC.2012.6426309","DOIUrl":null,"url":null,"abstract":"We investigate the stabilization of the dynamical state of a superconducting qubit. In a series of papers, A. Korotkov and his co-workers suggested that continuous weak measurement of the state of a qubit and applying an appropriate feedback on the amplitude of a Rabi drive, should maintain the coherence of the Rabi oscillations for arbitrary time. Here, in the aim of addressing a metrological application of these persistent Rabi oscillations, we explore a new variant of such strategies. This variant is based on performing strong measurements in a discrete manner and using the measurement record to correct the phase of the Rabi oscillations. Noting that such persistent Rabi oscillations can be viewed as an amplitude-to-frequency convertor (converting the amplitude of the Rabi microwave drive to a precise frequency), we propose another feedback layer consisting of a simple analog phase locked loop to compensate the low frequency deviations in the amplitude of the Rabi drive.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6426309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We investigate the stabilization of the dynamical state of a superconducting qubit. In a series of papers, A. Korotkov and his co-workers suggested that continuous weak measurement of the state of a qubit and applying an appropriate feedback on the amplitude of a Rabi drive, should maintain the coherence of the Rabi oscillations for arbitrary time. Here, in the aim of addressing a metrological application of these persistent Rabi oscillations, we explore a new variant of such strategies. This variant is based on performing strong measurements in a discrete manner and using the measurement record to correct the phase of the Rabi oscillations. Noting that such persistent Rabi oscillations can be viewed as an amplitude-to-frequency convertor (converting the amplitude of the Rabi microwave drive to a precise frequency), we propose another feedback layer consisting of a simple analog phase locked loop to compensate the low frequency deviations in the amplitude of the Rabi drive.