Signal combining for relay transmission with rateless codes

Azad Ravanshid, L. Lampe, J. Huber
{"title":"Signal combining for relay transmission with rateless codes","authors":"Azad Ravanshid, L. Lampe, J. Huber","doi":"10.1109/ISIT.2009.5205721","DOIUrl":null,"url":null,"abstract":"The invention of practical rateless codes in the form of Luby transform and Raptor codes has facilitated the implementation of decode-and-forward relaying schemes which permit the relay to autonomously switch between listening and collaboration phase. Considering the classical three-node relay network employing such a flexible decode-and-forward mechanism, in this paper we investigate signal combining strategies for the destination node. In particular, we compare information and energy combining considered previously in the literature and introduce a new, so-called mixed combining scheme, which is a hybrid of the two former strategies. Assuming general finite-size signal constellations we show that mixed combining is advantageous over the pure combining schemes in terms of achievable rate given the same total transmit energy. A comparison of the associated constellation-constrained capacities with simulated rates achieved for relay transmission with moderate-length Raptor codes underscores (i) the relevance of the capacity-based analysis and (ii) the suitability of rateless codes for relay transmission.","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The invention of practical rateless codes in the form of Luby transform and Raptor codes has facilitated the implementation of decode-and-forward relaying schemes which permit the relay to autonomously switch between listening and collaboration phase. Considering the classical three-node relay network employing such a flexible decode-and-forward mechanism, in this paper we investigate signal combining strategies for the destination node. In particular, we compare information and energy combining considered previously in the literature and introduce a new, so-called mixed combining scheme, which is a hybrid of the two former strategies. Assuming general finite-size signal constellations we show that mixed combining is advantageous over the pure combining schemes in terms of achievable rate given the same total transmit energy. A comparison of the associated constellation-constrained capacities with simulated rates achieved for relay transmission with moderate-length Raptor codes underscores (i) the relevance of the capacity-based analysis and (ii) the suitability of rateless codes for relay transmission.
用无速率码中继传输的信号合并
Luby变换和Raptor代码形式的实用无速率代码的发明促进了解码转发中继方案的实现,该方案允许中继在侦听和协作阶段之间自主切换。考虑到采用这种灵活的译码转发机制的经典三节点中继网络,本文研究了目的节点的信号合并策略。特别地,我们比较了先前文献中考虑的信息和能量组合,并引入了一种新的所谓混合组合方案,它是前两种策略的混合。假设一般有限大小的信号星座,我们证明了在相同的总发射能量下,混合组合在可实现速率方面优于纯组合方案。将相关的星座约束容量与中等长度Raptor码中继传输的模拟速率进行比较,强调了(i)基于容量的分析的相关性以及(ii)无速率码用于中继传输的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信