R. Dobkin, Y. Perelman, T. Liran, R. Ginosar, A. Kolodny
{"title":"High Rate Wave-pipelined Asynchronous On-chip Bit-serial Data Link","authors":"R. Dobkin, Y. Perelman, T. Liran, R. Ginosar, A. Kolodny","doi":"10.1109/ASYNC.2007.20","DOIUrl":null,"url":null,"abstract":"A high data rate asynchronous bit-serial link for long-range on-chip communication is presented. The data bit cycle time is equal to a single gate delay, enabling 67 Gbps throughput in 65 nm technology. The serial link incurs lower power and area costs relative to bit-parallel communications, and enables higher tolerance to PVT variations relative to synchronous links. The link uses differential dual-rail level encoding (LEDR) and current mode signaling over a low-crosstalk interconnect layout. Novel circuits used in the link are described, including a novel splitter shift register, a fast LEDR encoder, a high-speed toggle element, a channel driver with adaptive control and a differential channel receiver.","PeriodicalId":136595,"journal":{"name":"13th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC'07)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.2007.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
A high data rate asynchronous bit-serial link for long-range on-chip communication is presented. The data bit cycle time is equal to a single gate delay, enabling 67 Gbps throughput in 65 nm technology. The serial link incurs lower power and area costs relative to bit-parallel communications, and enables higher tolerance to PVT variations relative to synchronous links. The link uses differential dual-rail level encoding (LEDR) and current mode signaling over a low-crosstalk interconnect layout. Novel circuits used in the link are described, including a novel splitter shift register, a fast LEDR encoder, a high-speed toggle element, a channel driver with adaptive control and a differential channel receiver.