GAN Generated Portraits Detection Using Modified VGG-16 and EfficientNet

Kha-Luan Pham, Khanh-Mai Dang, Loi-Phat Tang, Thanh-Nhan Nguyen
{"title":"GAN Generated Portraits Detection Using Modified VGG-16 and EfficientNet","authors":"Kha-Luan Pham, Khanh-Mai Dang, Loi-Phat Tang, Thanh-Nhan Nguyen","doi":"10.1109/NICS51282.2020.9335837","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks can generate deceptive portraits of people who do not exist. The misuse of this technology leads to severe security issues such as fake identities and credentials. Since 2017, many works on Deep Learning have focused on detecting GAN synthesized images to prevent the threat against credibility in media. In this work, the authors propose a lightweight VGG-like model to detect state-of-the-art StyleGAN generated portraits. The authors also adopt EfficientNet-B0 to train a classifier on the same StyleGAN architecture. The VGG-like model and EfficientNet-based model achieve 98.9% and 100%, respectively, on the StyleGAN dataset published by Nvidia in 2019. Both models show the potential in generalizing to other GAN architectures and synthetic technologies.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Generative Adversarial Networks can generate deceptive portraits of people who do not exist. The misuse of this technology leads to severe security issues such as fake identities and credentials. Since 2017, many works on Deep Learning have focused on detecting GAN synthesized images to prevent the threat against credibility in media. In this work, the authors propose a lightweight VGG-like model to detect state-of-the-art StyleGAN generated portraits. The authors also adopt EfficientNet-B0 to train a classifier on the same StyleGAN architecture. The VGG-like model and EfficientNet-based model achieve 98.9% and 100%, respectively, on the StyleGAN dataset published by Nvidia in 2019. Both models show the potential in generalizing to other GAN architectures and synthetic technologies.
基于改进VGG-16和EfficientNet的GAN生成人像检测
生成对抗网络可以生成不存在的人的欺骗性肖像。这种技术的滥用会导致严重的安全问题,例如伪造身份和凭证。自2017年以来,深度学习的许多工作都集中在检测GAN合成图像上,以防止对媒体可信度的威胁。在这项工作中,作者提出了一个轻量级的类似vg的模型来检测最先进的StyleGAN生成的肖像。作者还采用了EfficientNet-B0在相同的StyleGAN架构上训练分类器。在英伟达2019年发布的StyleGAN数据集上,类似vgg的模型和基于efficientnet的模型分别实现了98.9%和100%的准确率。这两种模型都显示了推广到其他GAN架构和合成技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信