Study on expansion and properties of grey accumulating generation operator

Meng Wei, Zeng Bo, L. Si-feng, Fang Zhi-geng
{"title":"Study on expansion and properties of grey accumulating generation operator","authors":"Meng Wei, Zeng Bo, L. Si-feng, Fang Zhi-geng","doi":"10.1109/GSIS.2015.7301827","DOIUrl":null,"url":null,"abstract":"By utilizing Gamma function expanded for integer factorial, this paper deduces the analytical expression of integer order accumulating generation operator based on the one order accumulating generation operator, then expands the integer order accumulating generation operator into the fractional order accumulating generation operator, and gives the analytical expression of fractional order accumulating generation operator. Actually, one order accumulating generation operator and integer order accumulating generation operator are both special cases of the fractional order accumulating generation operator. Theoretical proof and numerical simulation proves that the fractional order accumulating generation operator satisfies commutative law and exponential law. Study on the fractional order accumulating generation operator would help develop grey prediction model with the fractional order operators and would widen the application fields of the grey prediction model.","PeriodicalId":246110,"journal":{"name":"2015 IEEE International Conference on Grey Systems and Intelligent Services (GSIS)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Grey Systems and Intelligent Services (GSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSIS.2015.7301827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

By utilizing Gamma function expanded for integer factorial, this paper deduces the analytical expression of integer order accumulating generation operator based on the one order accumulating generation operator, then expands the integer order accumulating generation operator into the fractional order accumulating generation operator, and gives the analytical expression of fractional order accumulating generation operator. Actually, one order accumulating generation operator and integer order accumulating generation operator are both special cases of the fractional order accumulating generation operator. Theoretical proof and numerical simulation proves that the fractional order accumulating generation operator satisfies commutative law and exponential law. Study on the fractional order accumulating generation operator would help develop grey prediction model with the fractional order operators and would widen the application fields of the grey prediction model.
灰色累积生成算子的展开及性质研究
利用对整数阶乘展开的Gamma函数,在一阶累积生成算子的基础上推导出整数阶累积生成算子的解析表达式,然后将整数阶累积生成算子展开为分数阶累积生成算子,给出分数阶累积生成算子的解析表达式。实际上,一阶累积生成算子和整数阶累积生成算子都是分数阶累积生成算子的特殊情况。理论证明和数值模拟证明了分数阶累积生成算子满足交换律和指数律。对分数阶累积生成算子的研究有助于利用分数阶算子建立灰色预测模型,拓宽灰色预测模型的应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信