A general sparse image prior combination in super-resolution

S. Villena, M. Vega, R. Molina, A. Katsaggelos
{"title":"A general sparse image prior combination in super-resolution","authors":"S. Villena, M. Vega, R. Molina, A. Katsaggelos","doi":"10.1109/ICDSP.2013.6622841","DOIUrl":null,"url":null,"abstract":"In this paper the Super-Resolution (SR) image registration and reconstruction problem is studied within the Bayesian framework using a general sparse image prior combination. The representation of the proposed priors as Scale Mixtures of Gaussians (SMG), leads to the introduction of variational parameters, for which degenerate distributions are assumed. In the proposed method all the problem unknowns are automatically estimated using variational techniques. An experimental comparison between the proposed and state of the art methods has been performed, on both synthetic and real images.","PeriodicalId":180360,"journal":{"name":"2013 18th International Conference on Digital Signal Processing (DSP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2013.6622841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper the Super-Resolution (SR) image registration and reconstruction problem is studied within the Bayesian framework using a general sparse image prior combination. The representation of the proposed priors as Scale Mixtures of Gaussians (SMG), leads to the introduction of variational parameters, for which degenerate distributions are assumed. In the proposed method all the problem unknowns are automatically estimated using variational techniques. An experimental comparison between the proposed and state of the art methods has been performed, on both synthetic and real images.
一种通用的超分辨率稀疏图像先验组合方法
本文利用广义稀疏图像先验组合,在贝叶斯框架下研究了超分辨率图像的配准与重建问题。将提出的先验表示为高斯尺度混合(SMG),导致引入变分参数,并假设其退化分布。该方法采用变分技术对所有未知问题进行自动估计。在合成图像和真实图像上,对所提出的和最先进的方法进行了实验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信