{"title":"A Novel Ultra-Wideband Low-Noise Amplifier Using an Extended Bandwidth RLC Topology","authors":"Saeed Ghaneei Aarani, M. Mehranpouy, B. Gosselin","doi":"10.1109/NEWCAS52662.2022.9842016","DOIUrl":null,"url":null,"abstract":"In this paper, a novel circuit technique is presented to extend the bandwidth of an ultra-wideband (UWB) low-noise amplifier (LNA). The proposed circuit consists of a standard symmetric center-tapped inductor and an RC series network that is connected to the center-tapped pin. Removing the series resistor in the shunt-peaking method allows increasing the headroom voltage of the LNA. Consequently, the DC current can be increased to benefit from larger S21. A differential common-gate LNA using the presented circuit is implemented in a CMOS 0.18-μm TSMC technology. The LNA operates from 4.33 GHz up to 13.9 GHz while is 11.3±0.5 dB and is less than -10 dB over the whole of the bandwidth. Furthermore, the LNA using a combination of the proposed approach and a conventional cross-coupled capacitor (CCC) technique achieves a minimum noise figure (NF) of 3.84 dB. Post-layout simulation shows power dissipation of 2.5 mW, while the supply voltage is 0.75 V.","PeriodicalId":198335,"journal":{"name":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS52662.2022.9842016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a novel circuit technique is presented to extend the bandwidth of an ultra-wideband (UWB) low-noise amplifier (LNA). The proposed circuit consists of a standard symmetric center-tapped inductor and an RC series network that is connected to the center-tapped pin. Removing the series resistor in the shunt-peaking method allows increasing the headroom voltage of the LNA. Consequently, the DC current can be increased to benefit from larger S21. A differential common-gate LNA using the presented circuit is implemented in a CMOS 0.18-μm TSMC technology. The LNA operates from 4.33 GHz up to 13.9 GHz while is 11.3±0.5 dB and is less than -10 dB over the whole of the bandwidth. Furthermore, the LNA using a combination of the proposed approach and a conventional cross-coupled capacitor (CCC) technique achieves a minimum noise figure (NF) of 3.84 dB. Post-layout simulation shows power dissipation of 2.5 mW, while the supply voltage is 0.75 V.