Comparison of Deep Learning Architectures for Pre-Screening of Breast Cancer Thermograms

Juan Carlos Torres-Galván, E. Guevara, F. J. González
{"title":"Comparison of Deep Learning Architectures for Pre-Screening of Breast Cancer Thermograms","authors":"Juan Carlos Torres-Galván, E. Guevara, F. J. González","doi":"10.1109/PN.2019.8819587","DOIUrl":null,"url":null,"abstract":"Infrared thermography can be used for pre-screening of breast cancer but the results of this technique depend on the experience of the human expert. We propose an automated analysis approach to assess the capabilities of deep neural networks to classify breast thermograms. The dataset consisted of 173 images and we compared seven deep learning architectures. VGG-16 convolutional neural network outperformed with a sensitivity of 100%, specificity of 82.35% and balanced accuracy of 91.18%. Such results indicate that deep neural networks can be used in the analysis of thermal images for breast cancer pre-screening.","PeriodicalId":448071,"journal":{"name":"2019 Photonics North (PN)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Photonics North (PN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PN.2019.8819587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Infrared thermography can be used for pre-screening of breast cancer but the results of this technique depend on the experience of the human expert. We propose an automated analysis approach to assess the capabilities of deep neural networks to classify breast thermograms. The dataset consisted of 173 images and we compared seven deep learning architectures. VGG-16 convolutional neural network outperformed with a sensitivity of 100%, specificity of 82.35% and balanced accuracy of 91.18%. Such results indicate that deep neural networks can be used in the analysis of thermal images for breast cancer pre-screening.
乳腺癌热像图预筛选的深度学习架构比较
红外热成像可用于乳腺癌的预筛查,但这项技术的结果取决于人类专家的经验。我们提出了一种自动分析方法来评估深度神经网络对乳房热图分类的能力。该数据集由173张图像组成,我们比较了7种深度学习架构。VGG-16卷积神经网络的灵敏度为100%,特异度为82.35%,平衡准确率为91.18%。这些结果表明,深度神经网络可以用于乳腺癌预筛查的热图像分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信