R. A. Rani, A. Zoolfakar, Mohamad Fauzee Mohamad Ryeeshyam, N. Azhar, M. H. Mamat, Salman Alrokavan, H. Khan, M. Mahmood
{"title":"2018 IEEE International Conference on Semiconductor Electronics (ICSE) Synthesis, Properties and Humidity Detection of Anodized Nb2O5 Films","authors":"R. A. Rani, A. Zoolfakar, Mohamad Fauzee Mohamad Ryeeshyam, N. Azhar, M. H. Mamat, Salman Alrokavan, H. Khan, M. Mahmood","doi":"10.1109/SMELEC.2018.8481330","DOIUrl":null,"url":null,"abstract":"Synthesis of nanoporous network Nb2O5has been conducted via anodization technique in the flouride-organic based solution. The structure morphology and the properties of the nanoporous films were characterized using field emission scanning electron microscopy (FESEM). In this research, a humidity sensor based on 1.5 micrometer thick nanoporous Nb2O5was developed and their performance was evaluated under 40% to 90% relative humidity at room temperature and different bias voltages of 2, 5 and 8 V. The highest relative sensitivity achieved was 156.2 for humidity sensor operated at bias voltage of 5 V.","PeriodicalId":110608,"journal":{"name":"2018 IEEE International Conference on Semiconductor Electronics (ICSE)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Semiconductor Electronics (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2018.8481330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Synthesis of nanoporous network Nb2O5has been conducted via anodization technique in the flouride-organic based solution. The structure morphology and the properties of the nanoporous films were characterized using field emission scanning electron microscopy (FESEM). In this research, a humidity sensor based on 1.5 micrometer thick nanoporous Nb2O5was developed and their performance was evaluated under 40% to 90% relative humidity at room temperature and different bias voltages of 2, 5 and 8 V. The highest relative sensitivity achieved was 156.2 for humidity sensor operated at bias voltage of 5 V.