Adaptive Neural Network Control for Marine Shafting System Using Dynamic Surface Control

P. Y. Tao, S. Ge, Tong-heng Lee
{"title":"Adaptive Neural Network Control for Marine Shafting System Using Dynamic Surface Control","authors":"P. Y. Tao, S. Ge, Tong-heng Lee","doi":"10.1109/CCA.2007.4389317","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of tracking a desired propeller shaft speed while simultaneously minimizing torsional vibrations within the shafting system, in the presence of parametric/functional uncertainties. Neural networks are utilized to compensate for the functional uncertainties in the system model. Under the proposed control, semiglobal uniform boundedness of the closed loop signals is guaranteed, and the number and size of neural networks required are significantly reduced.","PeriodicalId":176828,"journal":{"name":"2007 IEEE International Conference on Control Applications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Control Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2007.4389317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we consider the problem of tracking a desired propeller shaft speed while simultaneously minimizing torsional vibrations within the shafting system, in the presence of parametric/functional uncertainties. Neural networks are utilized to compensate for the functional uncertainties in the system model. Under the proposed control, semiglobal uniform boundedness of the closed loop signals is guaranteed, and the number and size of neural networks required are significantly reduced.
基于动态表面控制的船舶轴系自适应神经网络控制
在本文中,我们考虑在存在参数/功能不确定性的情况下,在同时最小化轴系内扭转振动的同时跟踪所需的传动轴转速的问题。利用神经网络对系统模型中的功能不确定性进行补偿。在此控制下,闭环信号的半全局一致有界性得到了保证,所需的神经网络数量和大小显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信